首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FTIR microspectroscopy has shown to be a proven tool in the investigation of many tissue types. We have used this spectroscopic approach to analyse structural differences between normal and aneurismal aortic tissues and also aortas from patients with congenital anomalies like aortic bicuspid valves. Spectral analysis showed important variations in amide I and II regions, related to changes in alpha-helix and beta-sheet secondary structure of proteins that seem to be correlated to structural modifications of collagen and elastin. These proteins are the major constituents of the aortic wall associated to smooth muscular cells. The amide regions have thus been identified as a marker of structural modifications related to these proteins whose modifications can be associated to a given aortic pathological situation. Both univariate (total absorbance image and band ratio) and multivariate (principal components analysis) analyses of the spectral information contained in the infrared images have been performed. Differences between tissues have been identified by these two approaches and allowed to separate each group of aortic tissues. However, with univariate band ratio analysis, the pathological group was found to be composed of samples from aneurismal aortas associated or not with an aortic bicuspid valve. In contrast, PCA was able to separate these two types of aortic pathologies. For other groups, PCA and band ratio analysis can differentiate between normal, aneurismal, and none dilated aortas from patients with a bicuspid aortic valve.  相似文献   

2.
FTIR microspectroscopy has shown to be a proven tool in the investigation of many tissue types. We have used this spectroscopic approach to analyse structural differences between normal and aneurismal aortic tissues and also aortas from patients with congenital anomalies like aortic bicuspid valves. Spectral analysis showed important variations in amide I and II regions, related to changes in alpha-helix and beta-sheet secondary structure of proteins that seem to be correlated to structural modifications of collagen and elastin. These proteins are the major constituents of the aortic wall associated to smooth muscular cells. The amide regions have thus been identified as a marker of structural modifications related to these proteins whose modifications can be associated to a given aortic pathological situation. Both univariate (total absorbance image and band ratio) and multivariate (principal components analysis) analyses of the spectral information contained in the infrared images have been performed. Differences between tissues have been identified by these two approaches and allowed to separate each group of aortic tissues. However, with univariate band ratio analysis, the pathological group was found to be composed of samples from aneurismal aortas associated or not with an aortic bicuspid valve. In contrast, PCA was able to separate these two types of aortic pathologies. For other groups, PCA and band ratio analysis can differentiate between normal, aneurismal, and none dilated aortas from patients with a bicuspid aortic valve.  相似文献   

3.
The advent of moderate dilatations in ascending aortas is often accompanied by structural modifications of the main components of the aortic tissue, elastin and collagen. In this study, we have undertaken an approach based on FTIR microscopy coupled to a curve‐fitting procedure to analyze secondary structure modifications in these proteins in human normal and pathological aortic tissues. We found that the outcome of the aortic pathology is strongly influenced by these proteins, which are abundant in the media of the aortic wall, and that the advent of an aortic dilatation is generally accompanied by a decrease of parallel β‐sheet structures. Elastin, essentially composed of β‐sheet structures, seems to be directly related to these changes and therefore indicative of the elastic alteration of the aortic wall. Conventional microscopy and confocal fluorescence microscopy were used to compare FTIR microscopy results with the organization of the elastic fibers present in the tissues. This in‐vitro study on 6 patients (three normal and three pathologic), suggests that such a spectroscopic marker, specific to aneurismal tissue characterization, could be important information for surgeons who face the dilemma of moderate aortic tissue dilatation of the ascending aortas. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Collagen and elastin are the primary determinants of vascular integrity, with elastin hypothesized to be the major contributor to aortic compliance and type I collagen the major contributor to aortic strength and stiffness. Type I collagen is normally heterotrimeric composed of two alpha1(I) and one alpha2(I) collagen chains, alpha1(I)(2)alpha2(I). Recent investigations have reported that patients with recessively inherited forms of Ehlers Danlos syndrome that fail to synthesize proalpha2(I) chains have increased risks of cardiovascular complications. To assess the role of alpha2(I) collagen in aortic integrity, we used the osteogenesis imperfecta model (oim) mouse. Oim mice, homozygous for a COL1A2 mutation, synthesize only homotrimeric type I collagen, alpha1(I)3. We evaluated thoracic aortas from 3-month-old oim, heterozygote, and wildtype mice biomechanically for circumferential breaking strength (Fmax) and stiffness (IEM), histologically for morphological differences, and biochemically for collagen content and crosslinking. Circumferential biomechanics of oim and heterozygote descending thoracic aortas demonstrated the anticipated reduced Fmax and IEM relative to wildtype mice. Histological analyses of oim descending aortas demonstrated reduced collagen staining relative to wildtype aortas suggesting decreased collagen content, which hydroxyproline analyses of ascending and descending oim aortas confirmed. These findings suggest the reduced oim thoracic aortic integrity correlates with the absence of the alpha2(I)collagen chains and in part with reduced collagen content. However, oim ascending aortas also demonstrated a significant increase in pyridinoline crosslinks/collagen molecule as compared to wildtype ascending aortas. The role of increased collagen crosslinks is uncertain; increased crosslinking may represent a compensatory mechanism for the decreased integrity.  相似文献   

5.
Miljkovic M  Romeo M  Matthäus C  Diem M 《Biopolymers》2004,74(1-2):172-175
We report for the first time the infrared spectra of individual human cervical cancer (HeLa) cells suspended in buffer or cell culture medium. Although we did not establish whether these cells were viable at the time of spectral data acquisition, we believe that the methodology used is applicable to the study of live cells. Data were collected either from entire cells, using 25- to 40-microm apertures, or via an imaging approach, where pixels measuring 6.25 x 6.25 microm were assembled to form a map of a cell in suspension. Measurements were carried out both in reflection/absorption and in transmission modes. The results reported here might have far-reaching implications for the use of infrared microspectroscopy to monitor cell proliferation, drug response, and other cell biological parameters in live cells.  相似文献   

6.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

7.
Microspectroscopic techniques such as Fourier transform infrared (FTIR) have played an important role in "fingerprinting" the biochemical composition of cellular components. Based on structure and function, complex biomolecules absorb energy in the mid-infrared (lambda = 2-20 microm) yielding characteristic vibrational infrared (IR) spectra. However, optical detection FTIR microspectroscopy may not be suitable for IR-absorbing sample materials. Photothermal microspectroscopy (PTMS) permits the direct measurement of heat generated as a result of sample material absorbing radiation. This approach generates true absorption spectra and is implemented by interfacing a scanning probe microscope and an FTIR spectrometer. Detection is performed using a near-field ultra-miniaturized temperature sensor. Employing PTMS, IR spectra of MCF-7 cells were examined in spectral regions (900-2000 cm(-1)) corresponding to proteins, DNA, RNA, glycoproteins, carbohydrates, lipids, and levels of protein phosphorylation. As a cell passes through the cell cycle, its nuclear material decondenses and condenses and this has led to ambiguity as to whether the intensity of such spectral regions may be associated with the G(1)-, S- or G(2)-phases of the cell cycle. Cultured cells were tracked over a time course known to correspond to marked alterations in cell-cycle distributions, as determined using flow cytometry. Experiments were carried out in the absence or presence of lindane, a pesticide known to induce G(1)-arrest in MCF-7 cells. Significant (P < 0.05) elevations in spectral intensities were associated with exponentially growing cell populations, predominantly in S-phase or G(2)-phase, compared to more quiescent populations predominantly in G(1)-phase. Increases in the absorption band at 970 cm(-1), associated with elevated protein phosphorylation, were observed in vibrational spectra of exponentially growing cell populations compared to those exhibiting a slowing in their growth kinetics. These results seem to suggest that intracellular bulk changes, associated with transit through the cell cycle, can be tracked using PTMS.  相似文献   

8.
FTIR microspectroscopy, in combination with cluster analysis, has been used to characterise skin tissues, in order to discriminate cancerous from non-cancerous ones. The main objective of this in vitro study was to demonstrate the applicability of infrared spectral imaging to separate, on paraffinised biopsies, pigmented nevi (benign skin lesions) from melanomas (malignant skin lesions). Infrared spectra were collected from paraffin-embedded samples of nevi and melanomas, without deparaffinisation. Despite the important contribution of the paraffin in these spectra, it was possible to find meaningful and discriminating spectral regions. Spectral imaging was first performed to localize different skin layers (dermis and epidermis). Spectra extracted from the images were subjected to hierarchical classification algorithm, which allowed the discrimination of melanomas from the nevi, using selected spectral windows that correspond to vibrations of DNA and melanin content. The diversity of skin lesions and direct accessibility to the skin make this organ an interesting field of investigation using this technique.  相似文献   

9.
Elucidation of the evolution of inflammatory bowel disease (IBD) to cancer by clinical symptoms and histopathology of biopsies is important. Fourier transform infrared microspectroscopy (FTIR-MSP) has shown promise as a diagnostic tool for distinction of normal and cancer cells and tissues. In the present work, FTIR-MSP is used to evaluate IBD cases and to study the IR spectral characteristic with respect to cancer and normal tissues from formalin-fixed colonic biopsies from patients. Specific regions of the spectra were analyzed by statistical tools to study variations in metabolites that signified changes between the two pathological conditions: IBD and cancer. IBD tissues can be grouped with cancer or normal tissue using certain parameters such as phosphate content and RNA/DNA ratio as calculated from the spectra and show intermediate levels with regard to these metabolites. Further classification of the spectra by cluster analysis indicated which cases of Crohn's disease (3 of 10 cases) or ulcerative colitis (7 of 10 cases) were more likely to progress to cancer. The study exhibits that FTIR-MSP can detect gross biochemical changes in morphologically identical IBD and cancer tissues and suggest which cases of IBD may require further evaluation for carcinogenesis.  相似文献   

10.
Cryopreservation is commonly used for the long-term storage of heart valve allografts. Despite the excellent hemodynamic performance and durability of cryopreserved allografts, reports have questioned whether cryopreservation affects the valvular structural proteins, collagen and elastin. This study uses two-photon laser scanning confocal microscopy (LSCM) to evaluate the effect of cryopreservation on collagen and elastin integrity within the leaflet and conduit of aortic and pulmonary human heart valves. To permit pairwise comparisons of fresh and cryopreserved tissue, test valves were bisected longitudinally with one segment imaged fresh and the other imaged after cryopreservation and brief storage in liquid nitrogen. Collagen was detected by second harmonic generation (SHG) stimulation and elastin by autofluorescence excitation. Qualitative analysis of all resultant images indicated the maintenance of collagen and elastin structure within leaflet and conduit post-cryopreservation. Analysis of the optimized percent laser transmission (OPLT) required for full dynamic range imaging of collagen and elastin showed that OPLT observations were highly variable among both fresh and cryopreserved samples. Changes in donor-specific average OPLT in response to cryopreservation exhibited no consistent directional trend. The donor-aggregated results predominantly showed no statistically significant change in collagen and elastin average OPLT due to cryopreservation. Since OPLT has an inverse relationship with structural signal intensity, these results indicate that there was largely no statistical difference in collagen and elastin signal strength between fresh and cryopreserved tissue. Overall, this study indicates that the conventional cryopreservation of human heart valve allografts does not detrimentally affect their collagen and elastin structural integrity.  相似文献   

11.
12.
It has been shown that vesicles play a key role in the onset mechanism of aortic calcification related to cholesterol-induced atherosclerosis. This study using a rabbit model was conducted to determine whether cholesterol exerts a direct effect on vesicle's calcifiability. Inclusion of cholesterol in calcifying media stimulated ATP-initiated deposition of calcium in a dose-dependent manner by vesicles isolated from normal aortas using crude collagenase digestion. By contrast, cholesterol did not significantly affect ATP-promoted calcification if vesicles were isolated from atherosclerotic aortas. To determine whether high cholesterol levels in atherosclerotic vesicle preparations may have already maximized calcifying activity and therefore account for lack of the vesicle's response to the sterol, Fourier transform infrared spectroscopy (FT-IR) was used to compare the cholesterol contents in control and atherosclerotic vesicles. The spectral patterns revealed higher levels of cholesterol in vesicle preparations from atherosclerotic aortas than those from normal aortas. Removal of extra-vesicular cholesterol micelles from atherosclerotic vesicles by a relatively low centrifugal force sensitized the vesicles to cholesterol stimulation causing a 2-fold increase in calcifying activity. Of various oxidized forms of cholesterol tested, 7-keto and 6-keto cholesterol enhanced the activity by 2-fold. Altogether, these observations suggest that cholesterol and especially its oxidized forms may induce aortic calcification by directly enhancing the vesicle's ability to calcify.  相似文献   

13.
In the biomedical field, infrared (IR) spectroscopic studies can involve the processing of data derived from many samples, divided into classes such as category of tissue (e.g., normal or cancerous) or patient identity. We require reliable methods to identify the class-specific information on which of the wavenumbers, representing various molecular groups, are responsible for observed class groupings. Employing a prostate tissue sample divided into three regions (transition zone, peripheral zone, and adjacent adenocarcinoma), and interrogated using synchrotron Fourier-transform IR microspectroscopy, we compared two statistical methods: (a) a new "cluster vector" version of principal component analysis (PCA) in which the dimensions of the dataset are reduced, followed by linear discriminant analysis (LDA) to reveal clusters, through each of which a vector is constructed that identifies the contributory wavenumbers; and (b) stepwise LDA, which exploits the fact that spectral peaks which identify certain chemical bonds extend over several wavenumbers, and which following classification via either one or two wavenumbers, checks whether the resulting predictions are stable across a range of nearby wavenumbers. Stepwise LDA is the simpler of the two methods; the cluster vector approach can indicate which of the different classes of spectra exhibit the significant differences in signal seen at the "prominent" wavenumbers identified. In situations where IR spectra are found to separate into classes, the excellent agreement between the two quite different methods points to what will prove to be a new and reliable approach to establishing which molecular groups are responsible for such separation.  相似文献   

14.
Although cervical cancer screening in the UK has led to reductions in the incidence of invasive disease, this programme remains flawed. We set out to examine the potential of infrared (IR) microspectroscopy to allow the profiling of cellular biochemical constituents associated with disease progression. Attenuated total reflection-Fourier Transform IR (ATR) microspectroscopy was employed to interrogate spectral differences between samples of exfoliative cervical cytology collected into liquid based cytology (LBC). These were histologically characterised as normal (n = 5), low-grade (n = 5), high-grade (n = 5) or severe dyskaryosis (? carcinoma) (n = 5). Examination of resultant spectra was coupled with principal component analysis (PCA) and subsequent linear discriminant analysis (LDA). The interrogation of LBC samples using ATR microspectroscopy with PCA-LDA facilitated the discrimination of different categories of exfoliative cytology and allowed the identification of potential biomarkers of abnormality; these occurred prominently in the IR spectral region 1200 cm(-1) - 950 cm(-1) consisting of carbohydrates, phosphate, and glycogen. Shifts in the centroids of amide I (approximately 1650 cm(-1)) and II (approximately 1530 cm(-1)) absorbance bands, indicating conformational changes to the secondary structure of intracellular proteins and associated with increasing disease progression, were also noted. This work demonstrates the potential of ATR microspectroscopy coupled with multivariate analysis to be an objective alternative to routine cytology.  相似文献   

15.
Infrared and Raman spectra of sequentially extracted primary cell walls and their pectic polymers were obtained from five angiosperm plants. Fourier-transform Raman spectrometry was shown to be a powerful tool for the investigation of primary cell-wall architecture at a molecular level, providing complementary information to that obtained by Fourier-transform infrared microspectroscopy. The use of an extraction procedure using imidazole instead of cyclohexane trans-1,2-N,N,N[prime],N[prime]-diaminotetraacetate allows the extension of the infrared spectral window for data interpretation from 1300 to 800 cm-1, to 2000 to 800 cm-1, and allows us to obtain Raman spectra from extracted cell-wall material. Wall constituents such as pectins, proteins, aromatic phenolics, cellulose, and hemicellulose have characteristic spectral features that can be used to identify and/or fingerprint these polymers without, in most cases, the need for any physical separation. The Gramineae (rice [Oryza sativa], polypogon [Polypogon fugax steud], and sweet corn [Zea mays]) are spectroscopically very different from the nongraminaceous monocotyledon (onion [Allium cepa]) and the dicotyledon (carrot [Daucus carota]); this reflects differences in chemical composition and cross-linking of the walls. The possibility of a taxonomic classification of plant cell walls based on infrared and Raman spectroscopies and the use of spectral fingerprinting for authentication and detection of adulteration of products rich in cell-wall materials are discussed.  相似文献   

16.
The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mg?1 total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft.  相似文献   

17.
OBJECTIVE: To determine whether diagnostic information may be recovered from the infrared spectra of exfoliated cell specimens by using a novel spectral feature extraction method, in conjunction with linear and quadratic discriminant analysis, for spectral classification. STUDY DESIGN: Over 800 infrared spectra were included in the study, with corresponding clinical diagnoses based upon cytology and, when available, histology reports. Three sets of classification trials were carried out with the aim of distinguishing the spectra corresponding to normal specimens from CIN 1, 2 and 3. For each of these three cases, the procedure was to: (1) develop a set of provisional classification models using only a "training" subset of the spectra, and (2) test each provisional model by its ability to correctly predict the diagnoses on the basis of the remaining spectra. RESULTS: For optimal classification trials, training set classification accuracies were 68% for normal/CIN 1, 73% for normal/CIN 2 and 81% for normal/CIN 3; for the corresponding test sets the classification accuracies were 60%, 60% and 67%, respectively. CONCLUSION: The infrared spectra of exfoliated cervical cells carry information regarding the presence or absence of dysplasia, and that information is recoverable--albeit imperfectly at this stage--from the spectra of "real life" cell preparations.  相似文献   

18.
The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information.  相似文献   

19.
Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis.  相似文献   

20.
This study investigated the spatial and temporal remodeling of blood vessel wall microarchitecture and cellular morphology during abdominal aortic aneurysm (AAA) development using immunofluorescent array tomography (IAT), a high-resolution three-dimensional (3D) microscopy technology, in the murine model. Infrarenal aortas of C57BL6 mice (N=20) were evaluated at 0, 7, and 28 days after elastase or heat-inactivated elastase perfusion. Custom algorithms quantified volume fractions (VF) of elastin, smooth muscle cell (SMC) actin, and adventitial collagen type I, as well as elastin thickness, elastin fragmentation, non-adventitial wall thickness, and nuclei amount. The 3D renderings depicted elastin and collagen type I degradation and SMC morphological changes. Elastin VF decreased 37.5% (p<0.01), thickness decreased 48.9%, and fragmentation increased 449.7% (p<0.001) over 28 days. SMC actin VF decreased 78.3% (p<0.001) from days 0 to 7 and increased 139.7% (p<0.05) from days 7 to 28. Non-adventitial wall thickness increased 61.1%, medial nuclei amount increased 159.1% (p<0.01), and adventitial collagen type I VF decreased 64.1% (p<0.001) over 28 days. IAT and custom image analysis algorithms have enabled robust quantification of vessel wall content, microstructure, and organization to help elucidate the dynamics of vascular remodeling during AAA development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号