首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/β-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of β-catenin and subsequent hyperactivation of Wnt/β-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/β-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/β-catenin signalling is required for maintenance of local organizers and tectal integrity.  相似文献   

2.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

3.
4.
Beads containing recombinant FGF8 (FGF8-beads) were implanted in the prospective caudal diencephalon or midbrain of chick embryos at stages 9-12. This induced the neuroepithelium rostral and caudal to the FGF8-bead to form two ectopic, mirror-image midbrains. Furthermore, cells in direct contact with the bead formed an outgrowth that protruded laterally from the neural tube. Tissue within such lateral outgrowths developed proximally into isthmic nuclei and distally into a cerebellum-like structure. These morphogenetic effects were apparently due to FGF8-mediated changes in gene expression in the vicinity of the bead, including a repressive effect on Otx2 and an inductive effect on En1, Fgf8 and Wnt1 expression. The ectopic Fgf8 and Wnt1 expression domains formed nearly complete concentric rings around the FGF8-bead, with the Wnt1 ring outermost. These observations suggest that FGF8 induces the formation of a ring-like ectopic signaling center (organizer) in the lateral wall of the brain, similar to the one that normally encircles the neural tube at the isthmic constriction, which is located at the boundary between the prospective midbrain and hindbrain. This ectopic isthmic organizer apparently sends long-range patterning signals both rostrally and caudally, resulting in the development of the two ectopic midbrains. Interestingly, our data suggest that these inductive signals spread readily in a caudal direction, but are inhibited from spreading rostrally across diencephalic neuromere boundaries. These results provide insights into the mechanism by which FGF8 induces an ectopic organizer and suggest that a negative feedback loop between Fgf8 and Otx2 plays a key role in patterning the midbrain and anterior hindbrain.  相似文献   

5.
6.
7.
Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, whereas FGF8a can promote midbrain development. In this study we used a chick electroporation assay and in vitro mouse brain explant experiments to compare the activity of FGF17b and FGF18 to FGF8a and FGF8b. First, FGF8b is the only protein that can induce the r1 gene Gbx2 and strongly activate the pathway inhibitors Spry1/2, as well as repress the midbrain gene Otx2. Consistent with previous studies that indicated high level FGF signaling is required to induce these gene expression changes, electroporation of activated FGFRs produce similar gene expression changes to FGF8b. Second, FGF8b extends the organizer along the junction between the induced Gbx2 domain and the remaining Otx2 region in the midbrain, correlating with cerebellum development. By contrast, FGF17b and FGF18 mimic FGF8a by causing expansion of the midbrain and upregulating midbrain gene expression. This result is consistent with Fgf17 and Fgf18 being expressed in the midbrain and not just in r1 as Fgf8 is. Third, analysis of gene expression in mouse brain explants with beads soaked in FGF8b or FGF17b showed that the distinct activities of FGF17b and FGF8b are not due to differences in the amount of FGF17b protein produced in vivo. Finally, brain explants were used to define a positive feedback loop involving FGF8b mediated upregulation of Fgf18, and two negative feedback loops that include repression of Fgfr2/3 and direct induction of Spry1/2. As Fgf17 and Fgf18 are co-expressed with Fgf8 in many tissues, our studies have broad implications for how these FGFs differentially control development.  相似文献   

8.
To bypass the essential gastrulation function of Fgf8 and study its role in lineages of the primitive streak, we have used a new mouse line, T-Cre, to generate mouse embryos with pan-mesodermal loss of Fgf8 expression. Surprisingly, despite previous models in which Fgf8 has been assigned a pivotal role in segmentation/somite differentiation, Fgf8 is not required for these processes. However, mutant neonates display severe renal hypoplasia with deficient nephron formation. In mutant kidneys, aberrant cell death occurs within the metanephric mesenchyme (MM), particularly in the cortical nephrogenic zone, which provides the progenitors for recurring rounds of nephron formation. Prior to mutant morphological changes, Wnt4 and Lim1 expression, which is essential for nephrogenesis, is absent in MM. Furthermore, comparative analysis of Wnt4-null homozygotes reveals concomitant downregulation of Lim1 and diminished tubule formation. Our data support a model whereby FGF8 and WNT4 function in concert to induce the expression of Lim1 for MM survival and tubulogenesis.  相似文献   

9.
10.
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development.  相似文献   

11.
12.
The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2-/-; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2-/-; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2 conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.  相似文献   

13.
Cell–cell signaling regulated by retinoic acid (RA), Wnt/β-catenin, and fibroblast growth factor (FGF) is important during body axis extension, and interactions between these pathways have been suggested. At early somite stages, Wnt/β-catenin and FGF signaling domains exist both anterior and posterior to the developing trunk, whereas RA signaling occurs in between in the trunk under the control of the RA-synthesizing enzyme retinaldehyde dehydrogenase-2 (Raldh2). Previous studies demonstrated that vitamin A deficient quail embryos and Raldh2−/− mouse embryos lacking RA synthesis exhibit ectopic expression of Fgf8 and Wnt8a in the developing trunk. Here, we demonstrate that Raldh2−/− mouse embryos display an expansion of FGF signaling into the trunk monitored by Sprouty2 and Pea3 expression, and an expansion of Wnt/β-catenin signaling detected by expression of Axin2, Tbx6, Cdx2, and Cdx4. Following loss of RA signaling, the caudal expression domains of Fgf8, Wnt8a, and Wnt3a expand anteriorly into the trunk, but no change is observed in caudal expression of Fgf4 or Fgf17 plus caudal expression of Fgf18 and Cdx1 is reduced. These findings suggest that RA repression of Fgf8, Wnt8a, and Wnt3a in the developing trunk functions to down-regulate FGF signaling and Wnt/β-catenin signaling as the body axis extends.  相似文献   

14.
The pivotal mechanisms that govern the correct patterning and regionalization of the distinct areas of the mammalian CNS are driven by key molecules that emanate from the so-called secondary organizers at neural plate and tube stages. FGF8 is the candidate morphogenetic molecule to pattern the mesencephalon and rhombencephalon in the isthmic organizer (IsO). Recognizable relevance has been given to the intracellular pathways by which Fgf8 is regulated and modulated. In chick limb bud development, a dual mitogen-activated protein kinase phosphatase-3 (Mkp3) plays a role as a negative feedback modulator of Fgf8 signaling. We have investigated the role of Mkp3 and its functional relationship with the Fgf8 signaling pathway in the mouse IsO using gene transfer microelectroporation assays and protein-soaked bead experiments. Here, we demonstrate that MKP3 has a negative feedback action on the MAPK/ERK-mediated FGF8 pathway in the mouse neuroepithelium.  相似文献   

15.
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.  相似文献   

16.
17.
Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.  相似文献   

18.
The midbrain-hindbrain boundary, or isthmus, is the source of signals that are responsible for regional specification of both the midbrain and anterior hindbrain. Fibroblast growth factor 8 (Fgf8) is expressed specifically at the isthmus and there is now good evidence that it forms at least part of the patterning signal. In this study, we use Fgf8 as a marker for isthmic cells to examine how interactions between midbrain and hindbrain can regenerate isthmic tissue and, thereby, gain insight into the normal formation and/or maintenance of the isthmus. We show that Fgf8-expressing tissue with properties of the isthmic organiser is generated when midbrain and rhombomere 1 tissue are juxtaposed but not when midbrain contacts any other rhombomere. The use of chick/quail chimeras shows that the isthmic tissue is largely derived from rhombomere 1. In a few cases a small proportion of the Fgf8-positive cells were of midbrain origin but this appears to be the result of a local respecification to a hindbrain phenotype, a process mimicked by ectopic FGF8. Studies in vitro show that the induction of Fgf8 is the result of a direct planar interaction between the two tissues and involves a diffusible signal.  相似文献   

19.
Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号