共查询到20条相似文献,搜索用时 15 毫秒
1.
人子宫内膜纤蛋白溶酶元激活因子及其抑制因子... 总被引:3,自引:0,他引:3
Two types of plasminogen activator (PAs) are present in human endometrium, and their contents vary with the different phases of menstrual cycle, i.e. high in the proliferative phase and low in the secretory phase. In the present study by immunohistochemical technique, both uPA and tPA antigens were demonstrated in the stromal and glandular cells of the endometrium. In cell culture, tPA was released only from stromal cells and uPA only from glandular cells as determined by SDS-PAGE followed by fibrin overlay technique, but PA inhibitor type-1 (PAI-1) was secreted by both stromal and glandular cells. Furthermore, secretion of PAs from endometrial cells was enhanced by adding estradiol and markedly inhibited by progesterone in a dose dependent manner, while the PAI reacted just in the opposite way. The effect of the peptide hormones, hCG, GnRH, PRL, as well as cAMP in cell culture on the secretion of PAs and PAI was similar to that of estradiol, while forskolin demonstrated definitely more stimulative effect on tPA than uPA. Taking into account of the finding of the present study, it appears that, under hormonal control, a balance between PAs and PAI in the endometrium exists. The physiological roles of the PAs and PAI in the endometrium were discussed. 相似文献
2.
3.
Summary Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by doublestaining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with M
r46000. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells. 相似文献
4.
Plasminogen activator inhibitor type-1 (PAI-1) was identified in extracts of rat adrenal medulla, and its immunohistochemical localization was studied together with that of tissue-type plasminogen activator (t-PA). By staining of adjacent sections and by double-staining of the same section we demonstrate that the same cells of the adrenal medulla contain both PAI-1 and t-PA immunoreactivity in the cytoplasm. In addition a few ganglion cells of the adrenal medulla were found to contain PAI-1 but not t-PA. Neither of the components were found in the adrenal cortex. Analysis of extracts from isolated adrenal medulla using reverse zymography showed the presence of a plasminogen activator inhibitor with Mr approximately 46,000. The inhibitory activity disappeared when the extract was passed through a column with sepharose-coupled anti-PAI-1 IgG, while the run-through from a similar column coupled with preimmune IgG still contained the inhibitor. The present findings suggest that PAI-1 could play a role in the regulation of t-PA activity in the rat adrenal gland medullary cells. 相似文献
5.
Regulation of tissue-type plasminogen activator and plasminogen activator inhibitor type-1 in cultured rat Sertoli and Leydig cells 总被引:3,自引:0,他引:3
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to 相似文献
6.
Nuria Arroyo De Prada Florian Schroeck Eva-Kathrin Sinner Bernd Muehlenweg Jens Twellmeyer Stefan Sperl Olaf G Wilhelm Manfred Schmitt Viktor Magdolen 《European journal of biochemistry》2002,269(1):184-192
The serpin plasminogen activator inhibitor type 1 (PAI-1) plays an important role in physiological processes such as thrombolysis and fibrinolysis, as well as pathophysiological processes such as thrombosis, tumor invasion and metastasis. In addition to inhibiting serine proteases, mainly tissue-type (tPA) and urokinase-type (uPA) plasminogen activators, PAI-1 interacts with different components of the extracellular matrix, i.e. fibrin, heparin (Hep) and vitronectin (Vn). PAI-1 binding to Vn facilitates migration and invasion of tumor cells. The most important determinants of the Vn-binding site of PAI-1 appear to reside between amino acids 110-147, which includes alpha helix E (hE, amino acids 109-118). Ten different PAI-1 variants (mostly harboring modifications in hE) as well as wild-type PAI-1, the previously described PAI-1 mutant Q123K, and another serpin, PAI-2, were recombinantly produced in Escherichia coli containing a His(6) tag and purified by affinity chromatography. As shown in microtiter plate-based binding assays, surface plasmon resonance and thrombin inhibition experiments, all of the newly generated mutants which retained inhibitory activity against uPA still bound to Vn. Mutant A114-118, in which all amino-acids at positions 114-118 of PAI-1 were exchanged for alanine, displayed a reduced affinity to Vn as compared to wild-type PAI-1. Mutants lacking inhibitory activity towards uPA did not bind to Vn. Q123K, which inhibits uPA but does not bind to Vn, served as a control. In contrast to other active PAI-1 mutants, the inhibitory properties of A114-118 towards thrombin as well as uPA were significantly reduced in the presence of Hep. Our results demonstrate that the wild-type sequence of the region around hE in PAI-1 is not a prerequisite for binding to Vn. 相似文献
7.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors. 相似文献
8.
9.
Endotoxin induction of plasminogen activator and plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo 总被引:14,自引:0,他引:14
P H Quax C M van den Hoogen J H Verheijen T Padro R Zeheb T D Gelehrter T J van Berkel J Kuiper J J Emeis 《The Journal of biological chemistry》1990,265(26):15560-15563
The tissue-specific distribution of tissue-type and urokinase-type plasminogen activator (t-PA and u-PA) and their inhibitor type 1 (PAI-1) was analyzed at mRNA level in five major rat organ tissues. t-PA mRNA was detected in lung, kidney, heart, and liver. u-PA mRNA was detected in kidney and lung. Presence of PA mRNA correlated with the detection of PA activity in extracts of these tissues. PAI-1 mRNA was detected predominantly in heart and lung. Although PAI activity could not be measured directly in tissue extracts, the presence of PAI-1 mRNA correlated with the occurrence of PA.PAI complex in fibrin autography of tissue extracts. Endotoxin injection caused a very large increase in plasma PAI activity. This increase correlated with a marked increase in PAI-1 mRNA in nearly all tissues studied. The increase in PAI-1 mRNA is most pronounced in lung and liver. Endotoxin injection also caused an increased level of t-PA mRNA in heart and kidney, and an increased u-PA mRNA level in kidney. mRNA analysis of freshly isolated and separated subfractionated liver cells showed that the marked increase in PAI-1 mRNA in the liver after endotoxin injection may be due mainly to a strong increase of PAI-1 mRNA in the liver endothelial cells. 相似文献
10.
11.
12.
13.
14.
15.
Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing 总被引:21,自引:0,他引:21
P A Andreasen A Riccio K G Welinder R Douglas R Sartorio L S Nielsen C Oppenheimer F Blasi K Dan? 《FEBS letters》1986,209(2):213-218
Both the urokinase-type and tissue-type plasminogen activator can convert their approximately 54 kDa type-1 inhibitor (PAI-1) to an inactive form with a lower apparent molecular mass. We have determined the amino-terminal amino acid sequences of human native and converted PAI-1, and isolated PAI-1 cDNA and determined the nucleotide sequence in regions corresponding to the amino-terminus and the cleavage site. The data show that the conversion of the inhibitor consists of cleavage of an Arg-Met bond 33 residues from the carboxy-terminus, thus localizing the reactive center of the inhibitor to that position. In addition, a heterogeneity was found at the amino-terminus, with a Ser-Ala-Val-His-His form and a two-residue shorter form (Val-His-His-) occurring in approximately equal quantities. 相似文献
16.
Non-muscle alpha-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1) 总被引:1,自引:0,他引:1
PAI-1 modulates many biological processes involving fibrinolysis, cell migration or tissue remodelling. In addition to inhibiting serine proteases (mainly tPA and uPA), PAI-1 interacts with vitronectin (Vn), fibrin or alpha(1)-acid glycoprotein, interactions which are important for PAI-1-mediated effects in inflammation, tumor invasion and metastasis. To further identify proteins interacting with PAI-1, the yeast two-hybrid strategy was employed. Screening of a human placenta cDNA library identified--in addition to the C-terminal region of cytokeratin 18 (CK18(182-430))--a large C-terminal fragment of alpha-actinin-4 (Act-4) as a binding partner for PAI-1. Two different cDNA clones encoding Act-4(287-911) and Act-4(330-911) respectively, were isolated. An Act-4(330-911)/GST-fusion protein, but not GST alone, was immunoprecipitated together with active PAI-1. In solid phase binding assays, active wild-type PAI-1 as well as the PAI-1 variant Q123K (which does not interact with multimeric Vn) was found to bind to Act-4(330-911)/GST. Latent PAI-1, latent Q123K, and the inactive PAI-1 variant Q55P did not display any binding activity. Act-4 is mainly present intracellularly and is involved in cellular motility via interaction with the actin cytoskeleton, thus probably affecting the metastatic potential of tumor cells. However, an extracellular Act-4-derived fragment (mactinin) has previously been identified, which (i) is generated by proteolytic action of uPA, (ii) displays significant chemotactic activity for monocytes, and (iii) promotes monocyte/macrophage maturation. We suggest that PAI-1, via interaction with both Act-4 and uPA, may function as a modulator of this mononuclear phagocyte response, not only in inflammation but also in tumor invasion and metastasis. 相似文献
17.
The regulatory region of the human plasminogen activator inhibitor type-1 (PAI-1) gene. 总被引:4,自引:1,他引:4 下载免费PDF全文
A Riccio L R Lund R Sartorio A Lania P A Andreasen K Dan F Blasi 《Nucleic acids research》1988,16(7):2805-2824
18.
mRNA levels for urokinase type plasminogen activator (uPA), tissue type plasminogen activator (tPA), plasminogen activator
inhibitor-1 (PAI-1) and plasminogen activator inhibitor-2 (PAI-2) were examined in human diploid (neonatal foreskin) fibroblasts
grown in 200-ml microcarrier suspension culture. Four different substrates were used. These included gelatin-coated polystyrene
plastic, DEAE-dextran, glass-coated polystyrene plastic and uncoated polystyrene plastic. Our previous studies have shown
that culture fluids from diploid fibroblasts grown on DEAE-dextran contained higher levels of plasminogen-dependent fibrinolytic
activity than culture fluids from the same cells grown on other substrates. The increased plasminogen activator activity was
due largely to elevated amounts of tPA (In Vitro Cell. Develop. Biol. 22: 575–582, 1986). The present study shows that there
is a corresponding elevation of tPA mRNA in diploid fibroblasts cultured on DEAE-dextran relative to the other substrates.
There does not appear to be any difference in uPA mRNA or in mRNA for PAI-1 or PAI-2 produced by the same cells on the four
substrates. These data suggest that the influence of the substrate on plasminogen activator production is mediated at the
genetic level. 相似文献
19.
J Keijer H J Ehrlich M Linders K T Preissner H Pannekoek 《The Journal of biological chemistry》1991,266(16):10700-10707
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators. 相似文献
20.
New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex 总被引:1,自引:0,他引:1
Podor TJ Shaughnessy SG Blackburn MN Peterson CB 《The Journal of biological chemistry》2000,275(33):25402-25410
Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces. 相似文献