首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper analyzes the distribution of osteons and interstitial bone in the femoral compacta according to their structure, degree of calcification and mechanical properties. Three cross sections, 100 microns thick, each located 1 cm from the next, were prepared by grinding from the middle third of a human femoral shaft. Starting from the premise that, in lamellar bone, lamellae whose fiber bundles and crystallites have a longitudinal course withstand loading by tension, whereas those whose fiber bundles and crystallites have a transversal course withstand loading by compression, each osteon and fragment of interstitial bone has been given a number recording the percentage of its surface consisting of lamellae with transversally oriented fiber bundles and crystallites (bright under the polarizing microscope). The degree of calcification of the same structures was determined micro-radiographically. The distribution of both osteons and interstitial bone was assessed using a tungsten grid for reference. The total surface of each bone microstructure, and the percentage of that surface consisting of bright lamellae, were all calculated using a Zeiss Video-plan. Our results confirm the view that the distribution of both osteons and interstitial bone is mainly related to their structure--and hence to their mechanical properties. In addition, bone remodeling seems to be most active in areas capable of supporting tensile stress.  相似文献   

2.
A two-dimensional micromechanical fibre reinforced composite materials model for osteonal cortical bone is presented. The interstitial bone is modelled as a matrix, the osteons are modelled as fibres, and the cement line is presented as interface tissue. The interaction between osteons and microcracks is evaluated by linear elastic fracture mechanics theory, followed by a determination of the stress intensity factor at the vicinity of the microcrack tips. The results indicate that bone microstructural heterogeneity greatly influences fracture parameters. Furthermore, microstructural morphology and loading conditions affect growth trajectories, the microcrack propagation trajectory deviates from the osteon under tensile loading, and osteon penetration is observed under compressive loads.  相似文献   

3.
In bone, matrix slippage that occurs at cement lines of secondary osteons during loading is an important toughening mechanism. Toughness can also be enhanced by modifications in osteon cross-sectional size (diameter) for specific load environments; for example, smaller osteons in more highly strained “compression” regions vs. larger osteons in less strained “tension” regions. Additional osteon characteristics that enhance toughness are distinctive variations in collagen/lamellar organization (i.e., “osteon morphotypes”). Interactions might exist between osteon diameter and morphotype that represent adaptations for resisting deleterious shear stresses that occur at the cement line. This may be why osteons often have a peripheral ring (or “hoop”) of highly oblique/transverse collagen. We hypothesized that well developed/distinct “hoops” are compensatory adaptations in cases where increased osteon diameter is mechanically advantageous (e.g., larger osteons in “tension” regions would have well developed/distinct “hoops” in order to resist deleterious consequences of co-existing localized shear stresses). We tested this hypothesis by determining if there are correlations between osteon diameters and strongly hooped morphotypes in “tension”, “compression”, and “neutral axis” regions of femora (chimpanzees, humans), radii (horse, sheep) and calcanei (horse, deer). The results reject the hypothesis—larger osteons are not associated with well developed/distinct “hoops”, even in “tension regions” where the effect was expected to be obvious. Although osteon diameter and morphotype are not coupled, osteon diameters seem to be associated with increased strain magnitudes in some cases, but this is inconsistent. By contrast, osteon morphotypes are more strongly correlated with the distribution of tension and compression.  相似文献   

4.
The interfacial strength of secondary osteons from the diaphysis of the Thoroughbred equine third metacarpal was evaluated using the fiber pushout test. The pushout was performed on 300-500 microm sections of 4x4x15 mm bone blocks machined from four anatomic regions of the cortex. Pushout strength was evaluated from proximal to distal location within the diaphysis on four osteon types classified under polarized light on adjacent histologic sections from each block. The shear strength of the interfaces were estimated from shear lag theory. Differences were found in the interfacial strength of osteons based on appearance under polarized light with bright field having the highest interfacial strength (40.3 MPa). The lowest strength was found in the dark field osteons (22.8 MPa). The dorsal region had the highest shear strength and toughness compared to all other regions. The cement line and interlamellar interfaces are similar in strength, but exhibit regional dependence--specifically, the palmar region strength is less (17.5 MPa) than the osteon interlamellar interfaces (30.4 MPa) and osteon type dependent (alternating significantly weaker than other types). Histomorphometry revealed significant regional differences (p<0.0001) in osteon area fraction among the four osteon types as well as differences in the osteon diameter (p=0.01), with dorsal regions having larger osteons (170 microm) than the palmar region (151 microm). Fatigue life and fracture toughness of Haversian bone are reported in the literature to be regionally dependent and are known to be associated with osteon pullout--an osteon interfacial phenomenon. Therefore, the results presented in this study are important to further the understanding of the mechanisms of fragility and damage accumulation in cortical bone.  相似文献   

5.
This work characterizes an aspect of human bone micro-structure, pertinent to fracture initiation and arrest. It addresses how the orientation of elementary components proximate to osteocyte lacunae influences secondary osteon micro-biomechanics. New data at the perilacunar region concerning orientation of collagen-apatite, and prior data on collagen orientation outside the perilacunar region, are incorporated in a novel simulation of osteons to investigate how orientation relates to strains and stresses during mechanical testing. The perilacunar region was observed by confocal microscopy within single lamellar specimens, isolated from osteons. The specimens were separated by extinct or bright appearance in transverse section under circularly polarizing light. This is because synchrotron diffraction and confocal microscopy had established that each type, away from the perilacunar region, corresponds to specific dominant collagen orientation (extinct lamellae's dominant collagen forming small angles with the original osteon axis, while the bright lamellae's forms larger angles). Morphometry of serial confocal images of each perilacunar region showed collagen orientation generally following the orientation of canaliculi, circumambiently-perpendicular to the lacuna. The lacunae tilted relative to the lamellar walls were more numerous in extinct than in bright lamella. Their apices were less likely in extinct than bright lamella to show collagen following the canalicular orientation. The simulation of osteocyte lacunae in osteons, under tension or compression loading, supports the hypothesis that collagen orientation affects strains and stresses at the equatorial perilacunar region in conjunction with the presence of the lacuna. We further conjecture that collagen orientation diverts propagation of micro-cracks initiating from apices.  相似文献   

6.
In human cortical bone, cement lines (or reversal lines) separate osteons from the interstitial bone tissue, which consists of remnants of primary lamellar bone or fragments of remodeled osteons. There have been experimental evidences of the cement line involvement in the failure process of bone such as fatigue and damage. However, there are almost no experimental data on interfacial properties of cement lines in human cortical bone. The objective of this study is to design and assemble a precision and computer controlled osteon pushout microtesting system, and to experimentally determine the interfacial strength of cement lines in human cortical bone by performing osteon pushout tests. Thirty specimens were prepared from humeral diaphyses of four human subjects. Twenty specimens were tested under the condition of a small hole in the supporting plate, in which the cement line debonding occurred. The cement line interfacial strength ranged from 5.38 MPa to 10.85 MPa with an average of 7.31±1.73 MPa. On the other hand, ten specimens were tested under the condition of a large hole in the supporting plate, in which the shear failure inside osteons was observed. The specimens tested under the condition of the large hole resulted in an average shear strength of 73.71±15.06 MPa, ranging from 45.97 MPa to 93.74 MPa. Therefore, our results suggest that the cement line interface between osteon and interstitial bone tissue is weaker than that between bone tissue lamellae.  相似文献   

7.
The possibility of smaller osteons in the cortical bone of Late Pleistocene human populations begs the question of how these histological features vary within individual skeletons among and between populations. The distributional characteristics of total osteon area (On.Ar) and Haversian canal area (H.Ar) are explored using data from three samples of historically known individuals: ribs and femora from eighteenth-century Huguenots in England (Spitalfields, n = 20), ribs and femora from nineteenth-century British settlers in Canada (St. Thomas, n = 21), and ribs from twentieth-century South African cadavers (University of Cape Town; following curatorial classifications, n = 10 white, 10 black, 10 colored). Neither histological variable is normally distributed. About 96% of the random variation is within the individual bone sample. There are no significant differences between sexes for either variable in any sample, and age has no effect in most instances. Femoral osteons are significantly larger than rib osteons within individuals and across samples. Haversian canal area is more variable than On.Ar, especially in the twentieth-century sample, where within-sample coefficients of variation are frequently >100%. Using modern centiles developed here, some Late Pleistocene long bone samples have On.Ar values below the range of modern variation. Because of ribs' smaller cross-sectional areas and less broadly ranging values for On.Ar, ribs would provide a preferable site for future comparative studies. Am J Phys Anthropol 106:219–227, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
A remodeling cycle sets the size of the osteon and associated lamellae in the basic multicellular unit. Treatments and aging affect these micro-structural features. We previously demonstrated decreased fatigue life with an unexplained mechanism and decreased osteon size in cortical bone treated with high-dose bisphosphonate. Here, three finite element models were examined: type-1: a single osteon, as a homogeneous unit and with heterogeneous lamellae and interlamellae, type-2: a control, interstitial-only tissue and type-3: the osteon with cement line, set within the interstitial tissue. Models were loaded in simulated, sinusoidal bending fatigue. As osteon size was decreased, lamellar number and lamellar thickness were incrementally adjusted for each model. As hypothesized, lamellae within the larger type-1 models attained greater cycles to failure and the addition of an osteon to type-2 models (generating a type-3 model set) yielded increased fatigue life. However, as the osteon size was decreased, the potential for compressive damage nucleation was increased within the lamellae of the osteons versus the interstitium. Also, osteons with fewer, thicker lamellae displayed increased fatigue life. Osteonal microstructure plays a role in damage initiation location, especially when BMU size is smaller. Previous findings by us and others could partially be explained by this further understanding of increased probability for damage nucleation in smaller osteons.  相似文献   

9.
Bone remodeling variables in the rib were analyzed for a skeletal population of medieval antiquity (ca. A.D. 550-1450) from Kulubnarti, in Sudanese Nubia. The skeletal remains are naturally mummified and in an excellent state of preservation. The study sample consists of thin sections from the ribs of 80 individuals, ranging in age from 15-50+ years. Ribs were examined using a standard microscope and image analysis software. Numbers of intact osteons, fragmentary osteons, forming osteons, and resorption spaces were counted, osteon and Haversian canal areas were measured, and several variables were calculated to assess morphometric and remodeling status in the rib. Variables calculated included mean annual activation frequency, mean bone formation rate, and net osteonal remodeling. Results indicate that age changes are consistent with those observed for other archaeological and modern samples. High numbers of resorption spaces in young males may reflect slower skeletal development in boys compared to girls. Comparisons of rib data with results of a previous study on patterns of femoral bone remodeling in the same population indicate that ribs have more osteons and higher bone formation rates compared to the femur. Also, sexual differences in osteon size observed in the femur were not observed in the rib. Activation frequency and bone formation rate are low in the Kulubnarti population compared to previously published data for a modern sample, a finding consistent with reported results from other archaeological samples. Genetic factors influencing the minimum effective strain setpoint and duration of skeletal maturation, in addition to repetitive high strains at Kulubnarti, may contribute to observed differences.  相似文献   

10.
The relationship between age, sex and histomorphometry in femoral cortical bone was examined in a skeletal population of late Medieval antiquity (AD 1250–1450) from Kulubnarti, in Sudanese Nubia. These skeletal remains are naturally mummified and in an excellent state of preservation. The study sample consisted of femoral cross sections from 24 females and 19 males ranging in age from 20 to 50+ years. Femoral cross sections were examined using an image analysis system. Numbers of secondary osteons and osteon fragments were counted, osteon area and Haversian canal area were measured, and several variables were calculated to assess differences between sexes and among age groups in bone remodeling variables. The results indicate significant differences between the sexes in osteon number and size. Males had significantly more intact osteons than females, whereas females had significantly larger osteons than males. Haversian canal dimensions were not statistically significant between the sexes. Sex differences in activity patterns in which males were involved in more physically strenuous tasks may have contributed to differences in remodeling variables. Interpopulational comparisons suggest that mechanical strain affects the microstructural features examined in this study. In particular, small Haversian canals in some archaeological skeletal populations are associated with higher bone volume, which may result from high levels of mechanical strain. Am J Phys Anthropol 104:133–146, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The mechanical behavior of bone tissue's ultra- and micro- structure is fundamental to assessment of macroscopic bone mechanics. This paper explores the ultra-structural characteristics of human femoral tissue responsible for energy absorption of secondary osteons under mechanical loading. A novel mathematical interpretation of single osteon mechanics elucidates the behavior of the collagen-apatite interface. Fully calcified single osteon specimens were mechanically tested quasi-statically under cyclic torsional loading about their longitudinal axis. On each hysteretic diagram, all cycles after the initial monotonic cycle appear pinched and share two points. Stiffness degradation and pinching degradation were investigated on the torque versus deflection-angle-per-unit-length diagrams as the number of cycles increases, in relation to the appearance of osteons in cross-section under circularly polarized light microscopy. Material science's Bauschinger effect, originally defined for metals and later extended to structures reinforced with metal bars, is adapted to describe pinching. Material science's prying effect, defined as amplification of eccentric tensile load through lever action, is employed to explain pinching. The presence of the two points shared by all complete cycles is analyzed in terms of the mathematical fixed point theorem. The results allow formulation of the following conjectures: (1) the prying of carbonated apatite crystallites at the interface with the 40 nm long bands of non-calcified collagen fibrils causes pinching; (2) the prying effect increases with the increasing percentage of collagen-apatite elements that form a larger angle with the osteon axis; and (3) micro-cracks increase more in number than in length as the number of cycles increases.  相似文献   

12.
The bending properties of single osteons   总被引:4,自引:0,他引:4  
The bending properties of two fully calcified osteon types (longitudinal and alternate) have been investigated in 62 cylindrical samples by applying the technique of three-point bending loading. The bending of each sample was recorded using a microwave micrometer based on the cavity and pulse technique. It has been shown that alternate osteons are better able to withstand bending stress than longitudinal ones. This result offers a definitive explanation for the high concentration of transverse lamellae in pathologically bowed bone shaft.  相似文献   

13.
This Finite Element study aims at understanding the transverse osteon as a composite microstructure, and at differentiating the actions of each of its main components and their interactions. Three components of the osteon have been distinguished: the lamellae mineral-collagen matrix, the lamellae mineral-collagen reinforcement fibers and the Haversian canal content made of intracortical fluid and soft tissues. Numerical compression experiments have been performed, varying the microstructure properties. Our results show that fiber reinforcement of transverse osteons is only efficient at resisting dynamic compressive loadings, but that the improvement of the static compressive properties is very poor. Furthermore, the modeled stress distribution within the matrix and reinforcement fibers may explain why transverse osteons are often limited to a small number of lamellae (<8) and why internal lamellae could be stiffer than external ones.  相似文献   

14.
Cement lines are the boundaries between secondary osteons and the surrounding interstitial bone matrix in cortical bone. The interfacial properties of cement lines have been determined by osteon pushout tests. However, distinctively different material properties were obtained when osteon pushout tests were performed under different test geometries. In the present study, an axisymmetric two-dimensional finite element model was used to simulate an osteon pushout test using the test geometry of actual experiments. The results indicated that shear failure within the osteonal lamellae would occur when the osteon pushout test was performed under the condition of a thick specimen and large supporting hole. On the other hand, cement line debonding occurred when the osteon pushout test was performed using a thin specimen and small supporting hole. The finite element results were consistent with previous experiments of osteon pushout tests under different test geometries. Furthermore, the finite-element results suggest that a smoothly curved punch would most likely cause debonding at the cement line instead of osteonal lamellae.  相似文献   

15.
Studies of secondary osteons in ribs have provided a great deal of what is known about remodeling dynamics. Compared with limb bones, ribs are metabolically more active and sensitive to hormonal changes, and receive frequent low‐strain loading. Optimization for calcium exchange in rib osteons might be achieved without incurring a significant reduction in safety factor by disproportionally increasing central canal size with increased osteon size (positive allometry). By contrast, greater mechanical loads on limb bones might favor reducing deleterious consequences of intracortical porosity by decreasing osteon canal size with increased osteon size (negative allometry). Evidence of this metabolic/mechanical dichotomy between ribs and limb bones was sought by examining relationships between Haversian canal surface area (BS, osteon Haversian canal perimeter, HC.Pm) and bone volume (BV, osteonal wall area, B.Ar) in a broad size range of mature (quiescent) osteons from adult human limb bones and ribs (modern and medieval) and various adult and subadult non‐human limb bones and ribs. Reduced major axis (RMA) and least‐squares (LS) regressions of HC.Pm/B.Ar data show that rib and limb osteons cannot be distinguished by dimensional allometry of these parameters. Although four of the five rib groups showed positive allometry in terms of the RMA slopes, nearly 50% of the adult limb bone groups also showed positive allometry when negative allometry was expected. Consequently, our results fail to provide clear evidence that BS/BV scaling reflects a rib versus limb bone dichotomy whereby calcium exchange might be preferentially enhanced in rib osteons. Am J Phys Anthropol 151:230–244, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The effects of collagen fiber orientation and osteon geometry on the mechanical properties of secondary osteons under axial compression/tension and combined loadings (compression, bending and torsion) were investigated using a composite-beam finite-element model. Three cross-sectional shapes of secondary osteons were studied to show the effect of geometry. The results of stiffness are presented using the tension and compression properties for each lamella. The model shows that the mechanical properties of osteons are enhanced in bending and torsion when collagen fibers are oriented within 30 degrees of the loading axis. Osteons with alternating lamellar orientation are not well adapted to resist torsional moments, but alternate collagen fiber orientation has virtually no effect on the bending stiffness of osteons. Fiber orientation affects the mechanical properties less significantly when osteons are non-circular. Collagen fiber orientation and osteon geometry interact to determine the mechanical behavior of the osteon, and may act in a compensatory manner in the adaptive process.  相似文献   

17.
The presence of the residual stresses in bone tissue has been noted and the authors have reported that there are residual stresses in bone tissue. The aim of our study is to measure the residual stress distribution in the cortical bone of the extremities of vertebrates and to describe the relationships with the osteon population density. The study used the rabbit limb bones (femur, tibia/fibula, humerus, and radius/ulna) and measured the residual stresses in the bone axial direction at anterior and posterior positions on the cortical surface. The osteons at the sections at the measurement positions were observed by microscopy. As a result, the average stresses at the hindlimb bones and the forelimb bones were 210 and 149 MPa, respectively. In the femur, humerus, and radius/ulna, the residual stresses at the anterior position were larger than those at the posterior position, while in the tibia, the stress at the posterior position was larger than that at the anterior position. Further, in the femur and humerus, the osteon population densities in the anterior positions were larger than those in the posterior positions. In the tibia, the osteon population density in the posterior position was larger than that in the anterior position. Therefore, tensile residual stresses were observed at every measurement position in the rabbit limb bones and the value of residual stress correlated with the osteon population density (r=0.55, P<0.01).  相似文献   

18.
Variation in the size of structures within mature cortical bone is relevant to our understanding of apparent differences between human samples, and it is relevant to the development of histologically based age-estimation methods. It was proposed that variation may reflect effects of physical activity, through biomechanical and/or metabolic mechanisms. If these factors are local, femoral osteon area (On.Ar) should be more histologically variable than On.Ar in ribs. Ribs should show a higher variation in Haversian canal area (H.Ar) if they are sites of more remodeling activity and hence of arrested refilling of secondary osteons at time of death. This study compares On.Ar and H.Ar of secondary osteons from femora (15) and ribs (29) from 44 Holocene (Later Stone Age) foragers from South Africa (M = 19, F = 25) to values from paired femora and ribs from historic samples (Spitalfields and St. Thomas, 20 pairs from each). Fixed-effects analysis of variance demonstrates rib On.Ar to be significantly smaller than femur, but with no sex or age effects. The femur-to-rib On.Ar ratio is lower for the Holocene foragers than for the two modern samples because of relatively large rib On.Ar. Femora and ribs from the same skeleton normally show femoral On.Ar larger than rib On.Ar (37/44 pairs). Mean femoral values of On.Ar are more diverse than rib On.Ar values, but within-sample coefficients of variation are similar. Values for H.Ar are highly variable and do not reflect anatomical site, age, sex, or population effects. The patterning of osteon size does not appear to be linked to physical activity or to different rates of metabolic activity within the skeleton, at least not in a straightforward way.  相似文献   

19.
Human compact bone may be viewed as a fiber reinforced composite material in which the secondary osteons act as the fiber reinforcements. The cement line, which is the interface between the 'fibers' (osteons) and extraosteonal bone matrix, may impart important mechanical properties to compact bone. The nature of these properties is not known partly because the composition of the cement line is unknown. This analysis examines the constituents of the osteon cement line using scanning electron microscopy and X-ray microprobe analysis to address its biomechanical functions as a local interface. The analysis suggests that the cement line is a region of reduced mineralization which may contain sulfated mucosubstances. This composition is consistent with the hypothesis that the cement line provides a relatively ductile interface with surrounding bone matrix, and that it provides the point specific stiffness differences, poor 'fiber'-matrix bonding and energy transfer qualities required to promote crack initiation but slow crack growth in compact bone.  相似文献   

20.
Haversian systems or secondary osteons are an integral component of compact bone. However, as their exact shape is debatable, this study describes a technique to view their morphology in three dimensions. Bone remodeling in adult ovine long bones was labelled at intervals using a series of chelating fluorochromes. A series of longitudinal sections were cut at 25 microm intervals through blocks of the distal radius embedded in methylmethacrylate using a sledge macrotome. The chelating agents were used as markers of bone formation in the study of bone growth and osteon morphology. The two-dimensional image of each section was examined using an epifluorescence microscope. Images were transferred to a PC via a CCD low light colour video camera. Surface reference points were noted on each of the sections and, using computer software, a three-dimensional image of a refilling labelled osteon was reconstructed and its dimensions measured. Haversian systems may have a gentle spiral course along the longitudinal axis of the bone. They intertwine with adjacent osteons and give multiple branches along their course producing a complex pattern of organization. The mean labelled length and diameter of the osteons was 1.4 + 1 mm and 145 + 0.42 microm [Mean + S.D], respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号