首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cherenkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The results of numerically solving the dispersion relation for different beam and plasma parameters are presented, and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase velocity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the ?3-dB bandwidth calculated for the 30-dB peak gain exceeds an octave are found.  相似文献   

2.
A theoretical model of intra-axonal transport is proposed that presupposes a carrier system moving down the axon in a distal direction. Protein and particle transport is achieved by their reversible association with the distally moving carriers. Mathematical equations representing the concentrations of moving carriers and proteins and/or particles within the axon at any position and time are proposed. Analysis of the equations demonstrates that a traveling wave solution for the particle concentration (an experimental fact) is possible provided the chemical interaction between particles and carriers exhibits positive cooperativity. The phase velocity of the wave solution is interpreted as the observed velocity of the intra-axonal transport, known to be independent of position of observation. In addition, the theory predicts a spectrum of transport velocities for different proteins, in agreement with observations. The velocity of a given protein is dependent on its affinity to the carrier.  相似文献   

3.
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.  相似文献   

4.
The nonlinear interaction of a relativistic electron beam with a plasma is investigated numerically on the basis of the extended notions of the physical quantities that enter the linear dispersion relation. Extending the notions of the wave frequency, wavenumber, and wave phase velocity to the nonlinear stage of an instability makes it possible to analyze the evolution of the Cherenkov and plasma resonances and to study how they affect the saturation of the wave amplitude. A model of the beam-plasma instability in which the growth rate is calculated from the corresponding linear hydrodynamic formula on the basis of the results obtained using a numerical kinetic model makes it possible to establish the applicability range of the hydrodynamic approximation for beams with different energies.  相似文献   

5.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

6.
Arterial blood flow is analyzed on the basis of a realistic model consisting of a viscous liquid contained in a thick-walled viscoelastic tube. Approximate forms of the Navier-Stokes and continuity equations are derived for this model and solved in conjunction with the equations of motion of an elastic solid. Expressions are found for the displacement of the tube wall, velocity distribution, volume flow rate and phase velocity of the pressure wave. Changes in the shape of the pressure wave caused by damping and dispersion are determined, and the effect of viscoelasticity is assessed. Numerical results are presented which correspond to observed parameters of the circulatory systems of living animals.  相似文献   

7.
《现代生物医学进展》2013,(32):6201-6203
动脉粥样硬化和易损斑块破裂在全球范围内具有最高的死亡率,超过传染病和癌症导致的死亡率的总和。动脉粥样硬化斑块是由一层很薄的”纤维帽”和导致血栓形成的脂质核心构成。光热波成像是基于对被目标发色团(本文中指脂肪沉积)吸收的光信号强度进行周期调制,从而实现对目标发色团释放的热(红外)信号的调制。这里,我们利用光热波成像来检测来自兔子动脉硬化模型的粥样硬化斑块中脂肪沉积的三维分布。波长为1210纳米的激光被用来靶向检测脂肪。动脉粥样硬化斑块组织在0.1到5赫兹连续扫频的激光的激发下发出光热波,光热波传播到样品表面形成红外辐射温度并被红外相机以25.6帧/秒的速度接收并录制20秒。红外相机上的每一个像素(总共256~256像素)在进行时域傅里叶变换以后得到强度和相位的频域光热波图像。某一特定频率的强度和相位光热波图像对应着脂肪沉积在动脉粥样硬化斑块样品中的横向和纵向分布。对强度和相位光热波图像的分析指出:光热波成像能够用来检测脂肪在动脉粥样硬化斑块中的三维分布,并且脂肪的分布和动脉粥样硬化斑块的形状特征有着紧密联系。  相似文献   

8.
Arterial blood flow is analyzed on the basis of a realistic model consisting of a viscous liquid contained in a thick-walled viscoelastic tube. Approximate forms of the Navier-Stokes and continuity equations are derived for this model and solved in conjunction with the equations of motion of an elastic solid. Expressions are found for the displacement of the tube wall, velocity distribution, volume flow rate and phase velocity of the pressure wave. Changes in the shape of the pressure wave caused by damping and dispersion are determined, and the effect of viscoelasticity is assessed. Numerical results are presented which correspond to observed parameters of the circulatory systems of living animals. This research was partially supported by the National Science Foundation; it was done in part by D. K. Whirlow in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Carnegie Institute of Technology.  相似文献   

9.
The development and nonlinear saturation of two-stream instability of a warm nonrelativistic electron beam in a cold plasma are investigated numerically in the framework of a one-dimensional model. It is shown that, for a sufficiently large velocity spread of the electron beam, instability develops and saturates according to a universal law, the wave phase velocity remains the same in the saturation stage, and the maximum field is somewhat lower than that predicted by classical estimates and depends in a different way on the growth rate. The damping of plasma oscillations not only changes the instability growth rate, but also substantially decreases the maximum wave field.  相似文献   

10.
A study is made of the propagation of steady-state large-amplitude longitudinal plasma waves in a cold collisionless plasma with allowance for both electron and ion motion. Conditions for the existence of periodic potential waves are determined. The electric field, potential, frequency, and wavelength are obtained as functions of the wave phase velocity and ion-to-electron mass ratio. Taking into account the ion motion results in the nonmonotonic dependence of the frequency of the waves with the maximum possible amplitudes on the wave phase velocity. Specifically, at low phase velocities, the frequency is equal to the electron plasma frequency for linear waves. As the phase velocity increases, the frequency first decreases insignificantly, reaches its minimum value, and then increases. As the phase velocity increases further, the frequency continues to increase and, at relativistic phase velocities, again becomes equal to the plasma frequency. Finally, as the phase velocity approaches the speed of light, the frequency increases without bound.  相似文献   

11.
The unique geometry with high surface ratio makes lipid micro/nano-tubules as an excellent self-assembled supramolecular structure in various biological applications such as controllable release systems and drug delivery. In the present study, the size-dependent nonlinear vibrations of axially loaded lipid micro/nano tubules associated with the both prebuckling and postbuckling domains are explored comprehensively. To accomplish this purpose, the nonlocal strain gradient theory of elasticity including simultaneously two entirely different features of size dependency is utilized within the framework of the third-order shear deformable beam model. With the aid of Hamilton's principle, the non-classical governing differential equations of motion are established incorporating the nonlinear prebuckling deformations and the large postbuckling deflections. At the end, the Galerkin method in conjunction with an improved perturbation technique is employed to initiate explicit analytical expressions for nonlocal strain gradient nonlinear frequency of pre- and post-buckled lipid micro/nano-tubules. It is seen that by taking the nonlocal size effect into consideration, the influence of geometrical parameters of the lipid micro/nano-tubule on the nonlinear vibration characteristics within the both prebuckling and postbuckling domains decreases and the frequency-deflection curves are more close to each other. However, the strain gradient size dependency has an opposite effect and leads to increase the gap between the frequency-deflection curves of axially compressed lipid micro/nano-tubules with different geometrical parameters.  相似文献   

12.
Biot's theory and the modified Biot-Attenborough (MBA) model are applied to predict the dependences of acoustic characteristics on frequency and on porosity in cancellous bone. The phase velocities and the attenuation coefficients predicted by both theories are compared with the experimental data of bovine cancellous bone specimens published in the literature. Biot's theory successfully predicts the dependences of the phase velocity on frequency and on porosity in cancellous bone, whereas a significant discrepancy is observed between the predicted and the measured attenuation coefficients. The MBA model agrees well with the frequency and the porosity dependences of the phase velocity and the attenuation coefficient experimentally measured in bovine bones. Although the MBA model relies on phenomenological parameters derived from the experimental data, its approach to cancellous bone can be usefully employed in the field of clinical ultrasonic bone assessment.  相似文献   

13.
A theoretical analysis for the problem of wave propagation in arteries is presented. Blood is treated as a Newtonian, viscous incompressible fluid. On the basis of information derived from experimental investigations on the mechanical properties of wall tissues, the arterial wall is considered to be nonlinearly viscoelastic and orthotropic. The analysis is carried out for a cylindrical artery, under the purview of membrane theory, by taking account the effect of initial stresses. The motion of the wall and that of the fluid are assumed to be axisymmetric. Particular emphasis has been paid to the propagation of small amplitude harmonic waves whose wavelength is large compared to the radius of the vessel. By employing the equations of motion of the fluid and those for the wall, together with the equations of continuity, a frequency equation is derived by exploiting the conditions of continuity of the velocity of the arterial wall and that of blood on the endosteal surface of the wall. In order to illustrate the validity of the derived analytical expressions a quantitative analysis is made for the variations of the phase velocities as well as the transmission coefficient with frequency corresponding to different transmural pressures which relate to different initial stresses. Computational results indicate that phase velocities increase with the increase of transmural pressures.  相似文献   

14.
A nonlinear theory of the instability of a straight relativistic dense electron beam in a plasma waveguide is derived for conditions of the stimulated collective Cherenkov effect. A study is made of a waveguide with a dense plasma such that the plasma wave excited by the beam during the instability can be escribed, with a good degree of accuracy, as a potential wave. General relativistic nonlinear equations are btained that describe the temporal dynamics of beam-plasma instabilities with allowance for plasma nonlinearity and the generation of harmonics of the initial perturbation. Under the assumption that the resonant interaction between the beam waves and the plasma waves is weak, the general equations are reduced to relativistic equations with cubic nonlinearities by using the method of expansion in small perturbations of the trajectories and momenta of the beam and plasma electrons. The reduced equations are solved analytically, the time scales on which the instability saturates are determined, and the nonlinear saturation amplitudes are obtained. A comparison between analytical solutions to the reduced equations and numerical solutions to the general nonlinear equations shows them to be in good agreement. Nonlinear processes caused by the relativistic nature of the beam are found to prevent stochastization of the system in the nonlinear stage of the well-developed instability. In contrast, a nonrelativistic electron beam is found to be subject to significant anomalous nonlinear stochastization.  相似文献   

15.
16.
A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.  相似文献   

17.
The linear stage of thermocurrent instability is investigated for a model gas in which the integral of inelastic collisions of electrons with gas particles has a divergent form and the frequencies of elastic and inelastic collisions are independent of the electron velocity. The proposed approach consists in the reduction of the Boltzmann equation for electrons in an inhomogeneous plasma to a set of equations for the moments of the electron velocity distribution function. The instability growth rate and the wave phase velocity as functions of the perturbation wavenumber are calculated, the maximum growth rate and the corresponding wavenumber are determined, and the dependence of these quantities on the degree of plasma quasineutrality is examined. It is demonstrated that the model satisfactorily (both qualitatively and quantitatively) describes the linear stage of thermocurrent instability in helium.  相似文献   

18.
A quantum theory of stimulated Cherenkov emission of longitudinal waves by an electron beam in an isotropic plasma is presented. The emitted radiation is interpreted as instability due to the decay of the de Broglie wave of a beam electron. Nonrelativistic and relativistic nonlinear quantum equations for Cherenkov beam instabilities are obtained. A linear approximation is used to derive quantum dispersion relations and to determine the instability growth rates. The mechanisms for nonlinear saturation of quantum Cherenkov beam instabilities are investigated, and the corresponding analytic solutions are found.  相似文献   

19.
The existing methods to solve the problems of pulsatile flow in the cardiovascular system are based on either linear axisymmetric equations or non-linear one-dimensional equations. The solutions thus obtained give only a mediocre comparison with measurements. In this paper, a non-linear axisymmetric theory is proposed. The starting point of the present theory is a third degree polynomial representation of the velocity profile. Integral methods are then applied to obtain the governing equations. To ascertain the accuracy of the theory proposed above, the calculations for a simple case involving pulsatile flow in a long rigid tube were performed. The results are: (a) the average velocities compare very well with exact solutions and (b) the velocity profiles for a given frequency agree very well with exact solutions for flow in small tubes, but tend to differ as tube size is increased.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号