首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior studies indicated that mechanical loading influences cell turnover and matrix remodeling in tissues, suggesting that mechanical stimuli can play an active role in engineering artificial tissues. While most tissue culture studies focus on influence of uniaxial loading or constraints, effects of multi-axial loading or constraints on tissue development are far from clear. In this study, we examined the biaxial mechanical properties of fibroblast-seeded collagen gels cultured under four different mechanical constraints for 6 days: free-floating, equibiaxial stretching (with three different stretch ratios), strip-biaxial stretching, and uniaxial stretching. Passive mechanical behavior of the cell-seeded gels was also examined after decellularization. A continuum-based two-dimensional Fung model was used to quantify the mechanical behavior of the gel. Based on the model, the value of stored strain energy and the ratio of stiffness in the stretching directions were calculated at prescribed strains for each gel, and statistical comparisons were made among the gels cultured under the various mechanical constraints. Results showed that gels cultured under the free-floating and equibiaxial stretching conditions exhibited a nearly isotropic mechanical behavior, while gels cultured under the strip-biaxial and uniaxial stretching conditions developed a significant degree of mechanical anisotropy. In particular, gels cultured under the equibiaxial stretching condition with a greater stretch ratio appeared to be stiffer than those with a smaller stretch ratio. Also, a decellularized gel was stiffer than its non-decellularized counterpart. Finally, the retained mechanical anisotropy in gels cultured under the strip-biaxial stretching and uniaxial stretching conditions after cell removal reflected an irreversible matrix remodeling.  相似文献   

2.
We studied actin cytoskeletal remodeling and the role of leukotrienes and tyrosine phosphorylation in the response of endothelial cells to different types of cyclic mechanical stretching. Human aortic endothelial cells were grown on deformable silicone membranes subjected to either cyclic one-directional (strip) stretching (10%, 0.5 Hz), or biaxial stretching. After 1 min of either type of stretching, actin cytoskeletons of the stretched cells were already disrupted. After stretching for 10 and 30 min, the percentage of the stretched cells that had disrupted actin cytoskeletons were significantly increased, compared with control cells without stretching. Also, at these two time points, biaxial stretching consistently produced higher frequencies of actin cytoskeleton disruption. At 3 h, strip stretching caused the formation of stress fiber bundles, which were oriented nearly perpendicular to the stretching direction. With biaxial stretching, however, actin cytoskeletons in many stretched cells were remodeled into three-dimensional actin structures protruding outside the substrate plane, within which cyclic stretching was applied. In both stretching conditions, actin filaments were formed in the direction without substrate deformation. Moreover, substantially inhibiting either leukotriene production with nordihydroguaiaretic acid or tyrosine phosphorylation with tyrphostin A25 did not block the actin cytoskeletal remodeling. However, inhibiting both leukotriene production and tyrosine phosphorylation completely blocked the actin cytoskeletal remodeling. Thus, the study showed that the remodeling of actin cytoskeletons of the stretched endothelial cells include rapid disruption first and then re-formation. The resulting pattern of the actin cytoskeleton after remodeling depends on the type of cyclic stretching applied, but under either type of cyclic stretching, the actin filaments are formed in the direction without substrate deformation. Finally, leukotrienes and tyrosine phosphorylation are necessary for actin cytoskeletal remodeling of the endothelial cells in response to mechanical stretching.  相似文献   

3.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

4.
An in vitro model system was developed to study structure-function relationships and the development of structural and mechanical anisotropy in collagenous tissues. Fibroblast-populated collagen gels were constrained either biaxially or uniaxially. Gel remodeling, biaxial mechanical properties, and collagen orientation were determined after 72 h of culture. Collagen gels contracted spontaneously in the unconstrained direction, uniaxial mechanical constraints produced structural anisotropy, and this structural anisotropy was associated with mechanical anisotropy. Cardiac and tendon fibroblasts were compared to test the hypothesis that tendon fibroblasts should generate greater anisotropy in vitro. However, no differences were seen in either structure or mechanics of collagen gels populated with these two cell types, or between fibroblast populated gels and acellular gels. This study demonstrates our ability to control and measure the development of structural and mechanical anisotropy due to imposed mechanical constraints in a fibroblast-populated collagen gel model system. While imposed constraints were required for the development of anisotropy in this system, active remodeling of the gel by fibroblasts was not. This model system will provide a basis for investigating structure-function relationships in engineered constructs and for studying mechanisms underlying the development of anisotropy in collagenous tissues.  相似文献   

5.
Many load-bearing soft tissues exhibit mechanical anisotropy. In order to understand the behavior of natural tissues and to create tissue engineered replacements, quantitative relationships must be developed between the tissue structures and their mechanical behavior. We used a novel collagen gel system to test the hypothesis that collagen fiber alignment is the primary mechanism for the mechanical anisotropy we have reported in structurally anisotropic gels. Loading constraints applied during culture were used to control the structural organization of the collagen fibers of fibroblast populated collagen gels. Gels constrained uniaxially during culture developed fiber alignment and a high degree of mechanical anisotropy, while gels constrained biaxially remained isotropic with randomly distributed collagen fibers. We hypothesized that the mechanical anisotropy that developed in these gels was due primarily to collagen fiber orientation. We tested this hypothesis using two mathematical models that incorporated measured collagen fiber orientations: a structural continuum model that assumes affine fiber kinematics and a network model that allows for nonaffine fiber kinematics. Collagen fiber mechanical properties were determined by fitting biaxial mechanical test data from isotropic collagen gels. The fiber properties of each isotropic gel were then used to predict the biaxial mechanical behavior of paired anisotropic gels. Both models accurately described the isotropic collagen gel behavior. However, the structural continuum model dramatically underestimated the level of mechanical anisotropy in aligned collagen gels despite incorporation of measured fiber orientations; when estimated remodeling-induced changes in collagen fiber length were included, the continuum model slightly overestimated mechanical anisotropy. The network model provided the closest match to experimental data from aligned collagen gels, but still did not fully explain the observed mechanics. Two different modeling approaches showed that the level of collagen fiber alignment in our uniaxially constrained gels cannot explain the high degree of mechanical anisotropy observed in these gels. Our modeling results suggest that remodeling-induced redistribution of collagen fiber lengths, nonaffine fiber kinematics, or some combination of these effects must also be considered in order to explain the dramatic mechanical anisotropy observed in this collagen gel model system.  相似文献   

6.
Cyclic stretching and growth factors like TGF-β have been used to enhance extracellular matrix (ECM) production by cells in engineered tissue to achieve requisite mechanical properties. In this study, the effects of TGF-β1 were evaluated during long-term cyclic stretching of fibrin-based tubular constructs seeded with neonatal human dermal fibroblasts. Samples were evaluated at 2, 5, and 7 weeks for tensile mechanical properties and ECM deposition. At 2 weeks, +TGF-β1 samples had 101% higher collagen concentration but no difference in ultimate tensile strength (UTS) or modulus compared to -TGF-β1 samples. However, at weeks 5 and 7, -TGF-β1 samples had higher UTS/modulus and collagen concentration, but lower elastin concentration compared to +TGF-β1 samples. The collagen was better organized in -TGF-β1 samples based on picrosirius red staining. Western blot analysis at weeks 5 and 7 showed increased phosphorylation of ERK in -TGF-β1 samples, which correlated with higher collagen deposition. The TGF-β1 effects were further evaluated by western blot for αSMA and SMAD2/3 expression, which were 16-fold and 10-fold higher in +TGF-β1 samples, respectively. The role of TGF-β1 activated p38 in inhibiting phosphorylation of ERK was evaluated by treating samples with SB203580, an inhibitor of p38 activation. SB203580-treated cells showed increased phosphorylation of ERK after 1 hour of stretching and increased collagen production after 1 week of stretching, demonstrating an inhibitory role of activated p38 via TGF-β1 signaling during cyclic stretching. One advantage of TGF-β1 treatment was the 4-fold higher elastin deposition in samples at 7 weeks. Further cyclic stretching experiments were thus conducted with constructs cultured for 5 weeks without TGF-β1 to obtain improved tensile properties followed by TGF-β1 supplementation for 2 weeks to obtain increased elastin content, which correlated with a reduction in loss of pre-stress during preconditioning for tensile testing, indicating functional elastin. This study shows that a sequential stimulus approach - cyclic stretching with delayed TGF-β1 supplementation - can be used to engineer tissue with desirable tensile and elastic properties.  相似文献   

7.
The periodontal ligament (PDL) is a specialized, mechanically responsive tissue that adapts via cellular responses to equilibrate the effects of mechanical stress on teeth. However, the mechanism of remodelling by which individual cells in periodontal tissue detect and respond to mechanical stress is not well understood. To identify the cellular mechanisms induced by mechanical stress in the periodontal ligament, we examined the effects of cyclic stretching on periodontal ligament fibroblast-like cells (PDL cells). Furthermore, we investigated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and interaction with peripheral blood mononuclear cells (PBMCs) on mechanically-simulated PDL cells. PDL cells were cultured on type I collagen-coated silicon membranes with 10% FBS alpha-MEM, and then subjected to cyclic mechanical stimulation (1 s stretching/1 s relaxation, 15% maximum elongation). Alkaline phosphatase activity was monitored by cytochemical and spectrophotometric methods. Morphologically, the cells assumed a spindle shape, and the cytoskeletal components, including microtubules and F-actin filaments, were aligned perpendicular to the strain force vector. Cyclic stretching decreased ALPase activity in PDL cells. The anabolic systemic hormone 1,25(OH)(2)D(3) increased ALPase activity, but this effect was suppressed by cyclic stretching. ALPase activities were reduced by co-culture with PBMCs, including lymphocytes and monocytes. This PBMC-induced ALPase reduction was synergistically reduced by cyclic stretching. ALPase activity was decreased by co-culture with PBMCs, and ALPase activity was reduced synergistically by treatment with PBMCs and cyclic stretching. We conclude that PDL cells changed their shape and alignment in response to cyclic stretching. Furthermore, local factors, such as mechanical stress and PBMCs, showed synergistic suppressive effects on ALPase activity.  相似文献   

8.
Mechanical stretch affects the healing and remodeling process of the anterior cruciate ligament (ACL) after surgery in important ways. In this study, the effects of mechanical stress on gene expression of type I and III collagen by cultured human ACL cells and roles of transforming growth factor (TGF)-beta1 in the regulation of mechanical strain-induced gene expression were investigated. Uniaxial cyclic stretch was applied on ACL cells at 10 cycles/min with 10% length stretch for 24 h. mRNA expression of the type I and type III collagen was increased by the cyclic stretch. TGF-beta1 protein in the cell culture supernatant was also increased by the stretch. In the presence of anti-TGF-beta1 antibody, stretch-induced increase in type I and type III mRNA expression was markedly ablated. The results suggest that the stretch-induced mRNA expression of the type I and type III collagen is mediated via an autocrine mechanism of TGF-beta1 released from ligament cells.  相似文献   

9.
The cell activity of human-bone-derived cell cultures was studied after mechanical stimulation by cyclic strain at a magnitude occurring in physiologically loaded bone tissue. Monolayers of subconfluently grown human-bone-derived cells were stretched in rectangular silicone dishes with cyclic predominantly uniaxial movement along their longitudinal axes. Strain was applied over two days for 30 min per day with a frequency of 1 Hz and a strain magnitude of 1000 microstrain. Cyclic stretching of the cells resulted in an increased proliferation (10-48%) and carboxyterminal collagen type I propeptide release (7-49%) of human-cancellous bone-derived osteoblasts while alkaline phosphatase activity and osteocalcin release were significantly reduced by 9-25 and 5-32%, respectively. These results demonstrate that cyclic strain at physiologic magnitude leads to an increase of osteoblast activities related to matrix production while those activities which are characteristic for the differentiated osteoblast and relevant for matrix mineralization are decreased.  相似文献   

10.
The cellular and molecular mechanisms underlying the development of tendinopathy are not clear, but inflammatory mediators produced by tendon fibroblasts in response to repetitive mechanical loading may be an important factor for this illness. In this study, we explored the effect of cyclic mechanical stretching on collagen synthesis and apoptosis of human patellar tendon fibroblasts (HPTFs). The role of a candidate inflammatory mediator, transforming growth factor-β1 (TGFβ1), which we identified in a cytokine antibody array, in collagen synthesis and apoptosis during repetitive mechanical stretching was also investigated. Our results showed that there was a significant increase in collagen type I synthesis at 4% and 8% stretch. Significantly, enhancement of apoptosis may account for the observed decrease in fibroblast numbers after 8% stretching. Furthermore, the exogenous addition of an anti-TGFβ1 antibody or gene silencing by si-TGFβ1 eliminated the increase in collagen type I production and activities of caspases during apoptosis under cyclic uniaxial stretching conditions. These results suggest that TGFβ1 may take part in the increase of cellular production of collagen type I and apoptosis during the development of tendinopathy. Furthermore, caspase 8 mediates activation of caspase 3 and poly ADP-ribose polymerase (PARP) cleavage during TGFβ1-induced apoptosis in stretching HPTFs.  相似文献   

11.
Understanding the effects of the mechanical environment on wound healing is critical for developing more effective treatments to reduce scar formation and contracture. The aim of this study was to investigate the effects of dynamic mechanical stretch on cell-mediated early wound remodeling independent of matrix alignment which obscures more subtle remodeling mechanisms. Cyclic equibiaxial stretch (16% stretch at 0.2 Hz) was applied to fibroblast-populated fibrin gel in vitro wound models for eight days. Compaction, density, tensile strength, and collagen content were quantified as functional measures of remodeling. Stretched samples were approximately ten times stronger, eight-fold more dense, and eight times thinner than statically cultured samples. These changes were accompanied by a 15% increase in net collagen but no significant differences in cell number or viability. When collagen crosslinking was inhibited in stretched samples, the extensibility increased and the strength decreased. The apparent weakening was due to a reduction in compaction rather than a decrease in ability of the tissue to withstand tensile forces. Interestingly, inhibiting collagen crosslinking had no measurable effects on the statically cultured samples. These results indicate that amplified cell-mediated compaction and even a slight addition in collagen content play substantial roles in mechanically induced wound strengthening. These findings increase our understanding of how mechanical forces guide the healing response in skin, and the methods employed in this study may also prove valuable tools for investigating stretch-induced remodeling of other planar connective tissues and for creating mechanically robust engineered tissues.  相似文献   

12.

There is substantial evidence that growth and remodeling of load bearing soft biological tissues is to a large extent controlled by mechanical factors. Mechanical homeostasis, which describes the natural tendency of such tissues to establish, maintain, or restore a preferred mechanical state, is thought to be one mechanism by which such control is achieved across multiple scales. Yet, many questions remain regarding what promotes or prevents homeostasis. Tissue equivalents, such as collagen gels seeded with living cells, have become an important tool to address these open questions under well-defined, though limited, conditions. This article briefly reviews the current state of research in this area. It summarizes, categorizes, and compares experimental observations from the literature that focus on the development of tension in tissue equivalents. It focuses primarily on uniaxial and biaxial experimental studies, which are well-suited for quantifying interactions between mechanics and biology. The article concludes with a brief discussion of key questions for future research in this field.

  相似文献   

13.
We have examined the effect of hydrocortisone and cyclic AMP on the maintenance of lipid synthesis in primary cultures of adult rat alveolar type II cells. These hormones were tested in the presence of either 1% or 5% charcoal-stripped rat serum (CS-rat serum). The effect of substratum on responsiveness to these hormones was evaluated by comparing cells cultured for 4 days on tissue culture plastic, on floating type I collagen gels, on rat lung fibroblast feeder layers on floating collagen gels (floating feeder layers), and on Engelbreth-Holm-Swarm (EHS) tumor basement membrane gels. Type II cells cultured on floating feeder layers in medium containing 1% CS-rat serum and 10(-5) M hydrocortisone plus 0.5 mM dibutyryl cyclic AMP exhibited significantly increased incorporation of [14C]acetate into total lipids (238% of control). The hormone combination also increased the relative percentage of acetate incorporated into phosphatidylglycerol (PG; 7.3% versus 1.9%) and saturated phosphatidylcholine (PC; 43.6% versus 37.6%). The percentage of acetate incorporated into neutral lipids was significantly decreased by the addition of hormones (28.6% versus 70.0%). The addition of hydrocortisone and cyclic AMP to medium containing 5% CS-rat serum resulted in an increase in the relative incorporation of acetate into saturated PC (51.2% versus 46.4%), but had no effect on the relative incorporation of acetate into PG or on the incorporation of acetate into total lipids. Type II cells cultured on EHS gels in medium containing 1% CS-rat serum plus hydrocortisone and cyclic AMP showed increased acetate incorporation into total lipids (204% of control) and a relative decrease in the percentage of acetate incorporated into neutral lipids (16.9% versus 47.0%). The hormone combination also increased the relative incorporation of acetate into PG (4.4% versus 2.5%) and saturated PC (49.9% versus 42.1%). Hydrocortisone and cyclic AMP added to medium containing 5% CS-rat serum concentration increased the relative incorporation of acetate into saturated PC by type II cells on EHS gels, but these additions had no effect on acetate incorporation into PG. No responses to these soluble factors were seen when type II cells were cultured on floating type I collagen gels without feeder layers or on tissue culture plastic. These data indicate that there are positive interactions between substratum, soluble factors and serum in the maintenance of differentiated function of adult rat alveolar type II cells in vitro.  相似文献   

14.
Collagen is the main load-bearing component of many soft tissues and has a large influence on the mechanical behavior of tissues when exposed to mechanical loading. Therefore, it is important to increase our understanding of collagen remodeling in soft tissues to understand the mechanisms behind pathologies and to control the development of the collagen network in engineered tissues. In the present study, a constitutive model was developed by coupling a recently developed model describing the orientation and contractile stresses exerted by cells in response to mechanical stimuli to physically motivated collagen remodeling laws. In addition, cell-mediated contraction of the collagen fibers was included as a mechanism for tissue compaction. The model appeared to be successful in predicting a range of experimental observations, which are (1) the change in transition stretch of periosteum after remodeling at different applied stretches, (2) the compaction and alignment of collagen fibers in tissue-engineered strips, (3) the fiber alignment in cruciform gels with different arm widths, and (4) the alignment of collagen fibers in engineered vascular grafts. Moreover, by changing the boundary conditions, the model was able to predict a helical architecture in the vascular graft without assuming the presence of two helical fiber families a priori. Ultimately, this model may help to increase our understanding of collagen remodeling in physiological and pathological conditions, and it may provide a tool for determining the optimal experimental conditions for obtaining native-like collagen architectures in engineered tissues.  相似文献   

15.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

16.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

17.
We have investigated the influence of long-term confined dynamic compression and surface motion under low oxygen tension on tissue-engineered cell-scaffold constructs. Porous polyurethane scaffolds (8 mm × 4 mm) were seeded with bovine articular chondrocytes and cultured under normoxic (21% O2) or hypoxic (5% O2) conditions for up to 4 weeks. By means of our joint-simulating bioreactor, cyclic axial compression (10–20%; 0.5 Hz) was applied for 1 h daily with a ceramic ball, which simultaneously oscillated over the construct surface (±25°; 0.5 Hz). Culture under reduced oxygen tension resulted in an increase in mRNA levels of type II collagen and aggrecan, whereas the expression of type I collagen was down-regulated at early time points. A higher glycosaminoglycan content was found in hypoxic than in normoxic constructs. Immunohistochemical analysis showed more intense type II and weaker type I collagen staining in hypoxic than in normoxic cultures. Type II collagen gene expression was slightly elevated after short-term loading, whereas aggrecan mRNA levels were not influenced by the applied mechanical stimuli. Of importance, the combination of loading and low oxygen tension resulted in a further down-regulation of collagen type I mRNA expression, contributing to the stabilization of the chondrocytic phenotype. Histological results confirmed the beneficial effect of mechanical loading on chondrocyte matrix synthesis. Thus, mechanical stimulation combined with low oxygen tension is an effective tool for modulating the chondrocytic phenotype and should be considered when chondrocytes or mesenchymal stem cells are cultured and differentiated with the aim of generating cartilage-like tissue in vitro. This work was supported by the Swiss National Science Foundation (grant no. 3200B0-104083).  相似文献   

18.
Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.  相似文献   

19.
Mechanical forces regulate the function of bone cells. In this paper, the effects of cyclic stretching on osteoblasts derived from rat calvaria were studied at a magnitude occurring in physiological loaded bone tissue. A four-point bending apparatus was used to apply cyclic stretching on osteoblasts. Stretching at 500 microepsilon for 2-24 h resulted in an increase in matrix synthesis(P<0.01). In contrast, the cyclic stretching at 1000 and 1500 microepsilon for 2-24 h inhibited osteoblast collagen production (P<0.01). We also described our new loading method to increase strain magnitude step-by-step. The strain magnitude increased by 500 microepsilon increments from 500 to 1500 microepsilon every 2 or 12 h, respectively. Results showed that osteoblasts could absorb large amount of proline for collagen synthesis when stretched at 500 microepsilon. However, not all the absorbed proline was used to synthesize collagen. Some of it was stored in cells. When the suitable signal (500 microepsilon) was changed to an inhibiting signal (1000 microepsilon), cells responded to it accordingly and released proline to medium. These results demonstrate that the response of osteoblasts is dependent on the magnitude of the strain applied and cells can adjust their bio-chemical response to adapt to the changing environmental stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号