共查询到20条相似文献,搜索用时 0 毫秒
1.
Partial anterior cruciate ligament (p-ACL) rupture is a common injury, but the impact of a p-ACL injury on in vivo joint kinematics has yet to be determined in an animal model. The in vivo kinematics of the ovine stifle joint were assessed during ‘normal’ gait, and at 20 and 40 weeks after p-ACL transection (Tx). Gross morphological scoring of the knee was conducted. p-ACL Tx creates significant progressive post-traumatic osteoarthritis (PTOA)-like damage by 40 weeks. Statistically significant increases for flexion angles at hoof-strike (HS) and mid-stance (MST) were seen at 20 weeks post p-ACL Tx and the HS and hoof-off (HO) points at 40 weeks post p-ACL-Tx, therefore increased flexion angles occurred during stance phase. Statistically significant increases in posterior tibial shift at the mid-flexion (MF) and mid-extension (ME) points were seen during the swing phase of the gait cycle at 40 weeks post p-ACL Tx. Correlation analysis showed a strong and significant correlation between kinematic changes (instabilities) and gross morphological score in the inferior-superior direction at 40 weeks post p-ACL Tx at MST, HO, and MF. Further, there was a significant correlation between change in gross morphological combined score (ΔGCS) and the change in location of the helical axis in the anterior direction (ΔsAP) after p-ACL Tx for all points analyzed through the gait cycle. This study quantified in vivo joint kinematics before and after p-ACL Tx knee injury during gait, and demonstrated that a p-ACL knee injury leads to both PTOA-like damage and kinematic changes. 相似文献
2.
Claudio Marcos Bedran Magalhães Renan Alves Resende Renata Noce Kirkwood 《Journal of electromyography and kinesiology》2013,23(5):1243-1249
The purpose of this study was to identify the gait strategies in women with mild and moderate knee osteoarthritis (OA). Forty women diagnosed with OA of the knee and 40 healthy women participated in the study. Toe-out progression angle, trunk lateral lean, hip internal abduction moment and gait speed were measured using Qualisys ProReflex System and two force plates. Principal component analysis was applied to extract features from the gait waveforms data that characterized the waveforms main modes of temporal variation. Discriminant analysis with a stepwise model was conducted to determine which strategies could best discriminate groups. According to the discriminant model, the PC2 of the internal abduction moment of the hip and the gait speed were the most discriminatory variables between the groups. The OA group showed decreased gait speed, decreased hip internal abduction moment during the loading response phase, and increased hip internal abduction moment during the mid and terminal stance phases. Interventions that may increase hip internal abduction moment, such as the strengthening of the hip abductors muscles, may benefit women with knee OA. Training slower than normal gait speeds must be considered in light of potential adverse implications on overall physical function, daily tasks, and safety. 相似文献
3.
Rita M. Kiss Author vitae 《Journal of electromyography and kinesiology》2011,21(5):695-703
Gait analysis has provided important information concerning gait patterns and variability of gait in patients with knee osteoarthritis (OA) of varying severity. The objective of this study was to clarify how the variability of gait parameters is influenced by the severity of knee OA. Gait analysis was performed at three different controlled walking speeds in three groups of subjects with varying degrees of knee OA (20 healthy subjects with no OA and 90 patients with moderate or severe OA). The variability of gait parameters was characterized by the coefficient of variance (CV) of spatial-temporal parameters, as well as by the mean coefficient variance (MeanCV) of angular parameters. Based on our results, we conclude that the complexity of gait decreases if the walking speed differs from the self-selected speed. In patients with knee OA, the decreased variability of angular parameters on the affected side represents decreased joint flexibility. This leads to decreased consistency in movements of the lower limbs from stride-to-stride, as shown by increased variability of spatial-temporal parameters. Decreased joint flexibility and consistency of movement can be associated with decreased complexity of movement. Other joints of the kinetic chain, such as joints of the non-affected side and the pelvis, play an important role in compensation and adaptation of step-by step motion and in the ability of secure gait. Results suggest that the variability of gait associated with knee osteoarthritis is gender-dependent. During rehabilitation, particular attention must be paid to improving gait stability and proprioception and gender differences should be taken into account. 相似文献
4.
Beimers L Tuijthof GJ Blankevoort L Jonges R Maas M van Dijk CN 《Journal of biomechanics》2008,41(7):1390-1397
Understanding in vivo subtalar joint kinematics is important for evaluation of subtalar joint instability, the design of a subtalar prosthesis and for analysing surgical procedures of the ankle and hindfoot. No accurate data are available on the normal range of subtalar joint motion. The purpose of this study was to introduce a method that enables the quantification of the extremes of the range of motion of the subtalar joint in a loaded state using multidetector computed tomography (CT) imaging. In 20 subjects, an external load was applied to a footplate and forced the otherwise unconstrained foot in eight extreme positions. These extreme positions were foot dorsiflexion, plantarflexion, eversion, inversion and four extreme positions in between the before mentioned positions. CT images were acquired in a neutral foot position and each extreme position separately. After bone segmentation and contour matching of the CT data sets, the helical axes were determined for the motion of the calcaneus relative to the talus between four pairs of opposite extreme foot positions. The helical axis was represented in a coordinate system based on the geometric principal axes of the subjects’ talus. The greatest relative motion between the calcaneus and the talus was calculated for foot motion from extreme eversion to extreme inversion (mean rotation about the helical axis of 37.3±5.9°, mean translation of 2.3±1.1 mm). A consistent pattern of range of subtalar joint motion was found for motion of the foot with a considerable eversion and inversion component. 相似文献
5.
Yen-Hung Liu Ting-Ming Wang I-Pin Wei Tung-Wu Lu Shih-Wun Hong Chien-Chung Kuo 《Journal of biomechanics》2014
Patients with knee OA show altered gait patterns, affecting their quality of living. The current study aimed to quantify the effects of bilateral knee OA on the intra-limb and inter-limb sharing of the support of the body during gait. Fifteen patients with mild, 15 with severe bilateral knee OA, and 15 healthy controls walked along a walkway while the kinematic and kinetic data were measured. Compared with the controls, the patients significantly reduced their knee extensor moments and the corresponding contributions to the total support moment in the sagittal plane (p<0.05). For compensation, the mild OA group significantly increased the hip extensor moments (p<0.05) to maintain close-to-normal support and a more symmetrical inter-limb load-sharing during double-limb support. The severe OA group involved compensatory actions of both the ankle and hip, but did not succeed in maintaining a normal sagittal total support moment during late stance, nor a symmetrical inter-limb load-sharing during double-limb support. In the frontal plane, the knee abductor moments and the corresponding contributions to the total support moment were not affected by the changes in the other joints, regardless of the severity of the disease. The observed compensatory changes suggest that strengthening of weak hip muscles is essential for body support during gait in patients with knee OA, but that training of weak ankle muscles may also be needed for patients with severe knee OA. 相似文献
6.
7.
8.
AimTo evaluate the activity of knee stabilizing muscles while using custom-made biomechanical footwear (BF) and to compare it when walking barefoot and with a knee brace (Unloader®).MethodsSeventeen healthy working-aged (mean age: 29 years; standard deviation: 8 years) individuals participated. The knee brace was worn on the right knee and BF in both legs. Surface electromyography (sEMG) data was recorded bilaterally from vastus medialis (VM), semitendinosus (ST), tibialis anterior (TA) and lateral gastrocnemius (LG) muscles during walking, and repeated-measures ANOVA with a post-hoc t-test was used to determine differences between the different walking modalities (barefoot, brace and BF).ResultsAveraged sEMG was significantly higher when walking with BF than barefoot or knee brace in the ST muscles, in the right LG, and left TA muscle. It was significantly lower when walking with the brace compared to barefoot in the right ST and LG muscles, and left TA muscle. Analysis of the ensemble-averaged sEMG profiles showed earlier activation of TA muscles when walking with BF compared to other walking modalities.ConclusionBF produced greater activation in evaluated lower leg muscles compared to barefoot walking. Thus BF may have an exercise effect in rehabilitation and further studies about its effectiveness are warranted. 相似文献
9.
《现代生物医学进展》2024,(24):4664-4666
摘要 目的:探讨下肢机器人辅助步态训练联合体外冲击波穴位治疗老年膝骨关节炎的临床效果。方法:选取2022.5-2024.5收治的62例老年膝骨关节炎患者,为观察组与对照组,各31例。对照组采用体外冲击波穴位治疗,观察组采用下肢机器人辅助步态训练联合体外冲击波穴位治疗,对比相关指标。结果:观察组总有效率高于对照(P<0.05);治疗后,观察组AROM、PROM高于对照组,两组治疗后高于治疗前(P<0.05);治疗后,观察组LKSS评分、6米步速高于对照组,两组LKSS评分治疗后高于治疗前(P<0.05),观察组6米步速治疗后高于治疗前(P<0.05);治疗后,观察组日常生活能力优于对照组(P<0.05)。结论:下肢机器人辅助步态训练联合体外冲击波穴位治疗老年膝骨关节炎疗效显著,可提升膝关节活动度,改善膝关节功能与步行功能,进而提升日常生活能力。 相似文献
10.
Knee instability is a major problem in patients with anterior cruciate ligament injury or knee osteoarthritis. A valid and clinically meaningful measure for functional knee instability is lacking. The concept of the gait sensitivity norm, the normalized perturbation response of a walking system to external perturbations, could be a sensible way to quantify knee instability. The aim of this study is to explore the feasibility of this concept for measurement of knee responses, using controlled external perturbations during walking in healthy subjects.Nine young healthy participants walked on a treadmill, while three dimensional kinematics were measured. Sudden lateral translations of the treadmill were applied at five different intensities during stance. Right knee kinematic responses and spatio-temporal parameters were tracked for the perturbed stride and following four cycles, to calculate perturbation response and gait sensitivity norm values (i.e. response/perturbation) in various ways.The perturbation response values in terms of knee flexion and abduction increased with perturbation intensity and decreased with an increased number of steps after perturbation. For flexion and ab/adduction during midswing, the gait sensitivity norm values were shown to be constant over perturbation intensities, demonstrating the potential of the gait sensitivity norm as a robust measure of knee responses to perturbations.These results show the feasibility of using the gait sensitivity norm concept for certain gait indicators based on kinematics of the knee, as a measure of responses during perturbed gait. The current findings in healthy subjects could serve as reference-data to quantify pathological knee instability. 相似文献
11.
摘要 目的:探讨miR-29a对于膝关节骨性关节炎(KOA)大鼠滑膜损伤中的保护作用研究。方法:采用前交叉韧带横断法(ACLT)建立KOA大鼠模型。大鼠注射microRNA阴性对照和miR-29a。通过实时定量聚合酶链反应(RT-qPCR)检测KOA滑膜组织和滑膜细胞中miR-29a的表达。RT-qPCR和蛋白免疫印迹试验检测Toll样受体4/髓样分化蛋白88/核因子κB(TLR4/Myd88/NF-κB)信号通路相关蛋白的表达。检测KOA滑膜组织及滑膜细胞中炎症因子的表达水平。结果:KOA滑膜组织和滑膜细胞中miR-29a表达下调。上调miR-29a可抑制KOA大鼠滑膜细胞的炎症反应,促使KOA大鼠的TLR4/Myd88/NF-κB信号通路失活。结论:上调miR-29a可通过TLR4/Myd88/NF-κB信号通路失活化抑制KOA大鼠滑膜细胞炎症反应,从而保护滑膜损伤。 相似文献
12.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training. 相似文献
13.
Ting-Ming Wang Hsiao-Ching Yen Tung-Wu Lu Hao-Ling Chen Chu-Fen Chang Yen-Hung Liu Wen-Chi Tsai 《Journal of biomechanics》2009,42(14):2349-2356
Fifteen elderly subjects with bilateral medial knee osteoarthritis (OA) and 15 healthy elderly subjects walked and crossed obstacles with heights of 10%, 20%, and 30% of their leg lengths while sagittal angles and angular velocities of each joint were measured and their phase angles () calculated. Continuous relative phase (CRP) were also obtained, i.e., hip−knee and knee−ankle. The standard deviations of the CRP curve points were averaged to obtain deviation phase (DP) values for the stance and swing phases. Significant differences between the OA and control groups were found in several of the peak and crossing angles, and angular velocities at the knee and ankle. Both groups had similar CRP patterns, and the DP values of the hip–knee and knee–ankle CRP curves were not significantly different between the two groups. Despite significant changes in the joint kinematics, knee OA did not significantly change the way the motions of the lower limb joints are coordinated during obstacle-crossing. It appears that the OA groups adopted a particular biomechanical strategy among all possible strategies that can accommodate the OA-induced changes of the knee mechanics using unaltered inter-joint coordination control. This enabled the OA subjects to accommodate reliably the mechanical demands related to bilateral knee OA in the sagittal plane during obstacle-crossing. Maintaining normal and reliable inter-joint coordination may be considered a goal of therapeutic intervention, and the patterns and variability of inter-joint coordination can be used for the evaluation of treatment effects. 相似文献
14.
Participation in running events has increased recently, with a concomitant increase in the rate of running related injuries (RRI). Mechanical overload is thought to be a primary cause of RRI, it is often detected using motion analysis to examine running mechanics during either overground or treadmill running. In treadmill running, no clear consensus for the number of strides required to establish stable kinematic data exists. The aim of this study was to establish the number of strides needed for stable data when analysing gait kinematics in the stance phase of treadmill running. Twenty healthy, masters age group, club runners completed a high intensity interval training run (HIIT) and an energy-expenditure matched medium intensity continuous run (MICR). Thirty consecutive strides at start and end of each run were identified. Sequential averaging was employed to determine the number of strides required to establish a stable value. No significant differences existed in the number of strides required to achieve stable values. Twenty consecutive strides are required to be 95% confident stable values exist for maximum angle, angle at initial foot contact, and range of motion at the ankle, knee, and hip joints variables at the ankle, knee, and hip joints, in all three planes of motion, and spatiotemporal regardless of running speed and time of capture. 相似文献
15.
Yulia Goryachev Eytan M. Debbi Amir Haim Nimrod Rozen Alon WolfAuthor vitae 《Journal of electromyography and kinesiology》2011,21(5):704-711
Background
Foot center of pressure (COP) manipulation has been associated with improved gait patterns. The purpose of this study was to determine lower limb muscle activation changes in knee osteoarthritis patients, both immediately after COP manipulation and when COP manipulation was combined with continuous gait therapy (AposTherapy).Methods
Fourteen females with medial compartment knee osteoarthritis underwent EMG analyzes of key muscles of the leg. In the initial stage, trials were carried out at four COP positions. Following this, gait therapy was initiated for 3 months. The barefoot EMG was compared before and after therapy.Results
The average EMG varied significantly with COP in at least one phase of stance in all examined muscles of the less symptomatic leg and in three muscles of the more symptomatic leg. After training, a significant increase in average EMG was observed in most muscles. Most muscles of the less symptomatic leg showed significantly increased peak EMG. Activity duration was shorter for all muscles of the less symptomatic leg (significant in the lateral gastrocnemius) and three muscles of the more symptomatic leg (significant in the biceps femoris). These results were associated with reduced pain, increased function and improved spatiotemporal parameters.Conclusions
COP manipulation influences the muscle activation patterns of the leg in patients with knee osteoarthritis. When combined with a therapy program, muscle activity increases and activity duration decreases. 相似文献16.
《Journal of electromyography and kinesiology》2014,24(2):264-270
During gait, a failure to acknowledge the low-frequency component of a segmental acceleration signal will result in an overestimation of impact-related shock and may lead to inappropriately drawn conclusions. The present study was undertaken to investigate the significance of this low-frequency component in two distinctly different modalities of gait: barefoot (BF) and shod (SHOD) walking. Twenty-seven participants performed five walking trials at self-selected speed in each condition. Peak positive accelerations (PPA) at the shank and spine were first derived from the time-domain signal. The raw acceleration signals were then resolved in the frequency-domain and the active (low-frequency) and impact-related components of the power spectrum density (PSD) were quantified. PPA was significantly higher at the shank (P < 0.0001) and spine (P = 0.0007) in the BF condition. In contrast, no significant differences were apparent between conditions for shank (P = 0.979) or spine (P = 0.178) impact-related PSD when the low-frequency component was considered. This disparity between approaches was due to a significantly higher active PSD in both signals in the BF condition (P < 0.0001; P = 0.008, respectively), due to kinematic differences between conditions (P < 0.05). These results indicate that the amplitude of the low-frequency component of an acceleration signal during gait is dependent on knee and ankle joint coordination behaviour, and highlight that impact-related shock is more accurately quantified in the frequency-domain following subtraction of this component. 相似文献
17.
The foot progression angle (FPA) influences knee loading during gait, but its determinants are unclear. The purpose of this study was to compare FPA between males and females and also examine the association between lower extremity kinematics during gait, hip strength, and the FPA. 25 males and 25 females completed 5 gait trials while FPA and frontal and transverse plane hip and knee angles were calculated from the dominant limb during the foot flat portion of stance. Hip extensor/flexor, abductor/adductor, and internal/external rotator strength were evaluated using maximum voluntary isometric contractions. One-way MANOVAs compared gait and strength outcomes. Stepwise regression assessed the association between FPA, and MVIC and kinematics after accounting for speed in males and females. There was no difference in FPA between sexes (p > 0.05), but females had greater frontal and transverse plane hip angles compared with males (all p < 0.05). Greater hip abduction (p = 0.02) strength was associated with greater FPA, but only in males. In males, greater hip abductor strength may contribute to a more neutral position of the foot during gait, which could help maintain an equal knee loading distribution. Our results suggest that there are sex specific control strategies to achieve a similar FPA during gait. 相似文献
18.
《Journal of electromyography and kinesiology》2014,24(2):258-263
Walking is the most common form of human locomotion. From a motor control perspective, human bipedalism makes the task of walking extremely complex. For parts of the step cycle, there is only one foot on the ground, so both balance and propulsion are required in order for the movement to proceed smoothly. One condition known to compound the difficulty of walking is the use of high heeled shoes, which alter the natural position of the foot–ankle complex, and thereby produce a chain reaction of (mostly negative) effects that travels up the lower limb at least as far as the spine. This review summarises recent studies that have examined acute and chronic effects of high heels on balance and locomotion in young, otherwise healthy women. Controversial issues, common study limitations and directions for future research are also addressed in detail. 相似文献
19.
As a cost-effective, clinician-friendly gait assessment tool, the Kinect v2 sensor may be effective for assessing lower extremity joint kinematics. This study aims to examine the validity of time series kinematical data as measured by the Kinect v2 on a flatland for gait assessment. In this study, 51 healthy subjects walked on a flatland while kinematic data were extracted concurrently using the Kinect and Vicon systems. The kinematic outcomes comprised the hip and knee joint angles. Parallel translation of Kinect data obtained throughout the gait cycle was performed to minimize the differences between the Kinect and Vicon data. The ensemble curves of the hip and knee joint angles were compared to investigate whether the Kinect sensor can consistently and accurately assess lower extremity joint motion throughout the gait cycle. Relative consistency was assessed using Pearson correlation coefficients. Joint angles measured by the Kinect v2 followed the trend of the trajectories made by the Vicon data in both the hip and knee joints in the sagittal plane. The trajectories of the hip and knee joint angles in the frontal plane differed between the Kinect and Vicon data. We observed moderate to high correlation coefficients of 20%–60% of the gait cycle, and the largest difference between Kinect and Vicon data was 4.2°. Kinect v2 time series kinematical data obtained on the flatland are validated if the appropriate correction procedures are performed. Future studies are warranted to examine the reproducibility and systematic bias of the Kinect v2. 相似文献
20.
Ligaments and articular contact guide passive knee flexion 总被引:4,自引:0,他引:4
The aim of this study was to test the hypothesis that the coupled features of passive knee flexion are guided by articular contact and by the isometric fascicles of the ACL, PCL and MCL. A three-dimensional mathematical model of the knee was developed, in which the articular surfaces in the lateral and medial compartments and the isometric fascicles in the ACL, PCL and MCL were represented as five constraints in a one degree-of-freedom parallel spatial mechanism. Mechanism analysis techniques were used to predict the path of motion of the tibia relative to the femur. Using a set of anatomical parameters obtained from a cadaver specimen, the model predicts coupled internal rotation and ab/adduction with flexion. These predictions correspond well to measurements of the cadaver specimen’s motion. The model also predicts posterior translation of contact on the tibia with flexion. Although this is a well-known feature of passive knee flexion, the model predicts more translation than has been reported from experiments in the literature. Modelling of uncertainty in the anatomical parameters demonstrated that the discrepancy between theoretical predictions and experimental measurement can be attributed to parameter sensitivity of the model. This study shows that the ligaments and articular surfaces work together to guide passive knee motion. A principal implication of the work is that both articular surface geometry and ligament geometry must be preserved or replicated by surgical reconstruction and replacement procedures to ensure normal knee kinematics and by extension, mechanics. 相似文献