首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the three cases presented in this study, free tensor fasciae latae perforator flaps were used successfully for the coverage of defects in the extremities. This flap has no muscle component and is nourished by muscle perforators of the transverse branch of the lateral circumflex femoral system. The area of skin that can by nourished by these perforators is larger than 15 x 12 cm. The advantages of this flap include minimal donor-site morbidity, the preservation of motor function of the tensor fasciae latae muscle and fascia lata, the ability to thin the flap by removing excess fatty tissue, and a donor scar that can be concealed. In cases that involve transection of the perforator above the deep fascia, the operation can be completed in a very short period of time. This flap is especially suitable as a free flap for young women and children who have scars in the proximal region of the lateral thigh or groin region that were caused by split-thickness skin grafting or full-thickness skin grafting during previous operations.  相似文献   

2.
Elevation of intraocular pressure has been correlated to changes in stiffness of trabecular meshwork (TM) in glaucomatous eyes although mechanical properties of the TM remain to be quantitatively determined. Data in the literature suggest that the TM cannot be considered mechanically as a uniform layer of isotropic elastic material, because the value of its Young’s modulus depends on the methods of measurements and can vary up to five orders of magnitude. To this end, we proposed a new theoretical framework for mechanical analysis of the TM, in which the inner wall of Schlemm’s canal and the juxtacanalicular tissue in the TM were treated as a uniform layer of isotropic elastic material, and the rest of the TM, i.e., the uveal and corneoscleral meshworks, were modeled as a uniform layer of transversely isotropic material. Using the model, we demonstrated that the large discrepancy in the apparent Young’s modulus reported in the literature could be caused by the anisotropy of the meshwork that was significantly stiffer in the longitudinal direction than in the transverse direction. The theoretical framework could be used to integrate existing data of the stiffness, investigate anisotropic behaviors of the tissues, and develop new methods to measure mechanical properties of the TM.  相似文献   

3.
4.
From the histological point of view, fascia lata is a dense connective tissue. Although extracellular matrix is certainly the most predominant fascia's feature, there are also several cell populations encountered within this structure. The aim of this study was to describe the existence and characteristics of fascia lata cell populations viewed through a transmission electron microscope. Special emphasis was placed on telocytes as a particular interstitial cell type, recently discovered in a wide variety of tissues and organs such as the heart, skeletal muscles, skin, gastrointestinal tract, uterus and urinary system. The conducted study confirmed the existence of a telocyte population in fascia lata samples. Those cells fulfil main morphological criteria of telocytes, namely, the presence of very long, thin cell processes (telopodes) extending from a relatively small cell body. Aside from telocytes, we have found fibroblasts, mast cells and cells with features of myofibroblastic differentiation. This is the first time it has been shown that telocytes exist in human fascia. Currently, the exact role of those cells within the fascia is unknown and definitely deserves further attention. One can speculate that fascia lata telocytes likewise telocytes in other organs may be involved in regeneration, homeostasis and intracellular signalling.  相似文献   

5.
In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs.  相似文献   

6.
The objective of this study was to determine the mechanical properties of the axillary pouch of the inferior glenohumeral ligament in the directions perpendicular (transverse) and parallel (longitudinal) to the longitudinal axis of the anterior band of the inferior glenohumeral ligament. A punch was used to excise one transverse and one longitudinal tissue sample from the axillary pouch of each cadaveric shoulder (n = 10). Each tissue sample was preconditioned and then a load-to-failure test was performed. All tissue samples exhibited the typical nonlinear behavior reported for ligaments and tendons. Significant differences (p < 0.05) were detected between the transverse and longitudinal tissue samples for ultimate stress (0.8 +/- 0.4 MPa and 2.0 +/- 1.0 MPa, respectively) and tangent modulus (5.4 +/- 2.9 MPa and 14.8 +/- 13.1 MPa, respectively). No significant differences (p > 0.05) were observed between the ultimate strain (transverse: 23.5 +/- 11.5%, longitudinal: 33.3 +/- 23.6%) and strain energy density (transverse: 10.8 +/- 8.5 MPa, longitudinal: 21.1 +/- 15.4 MPa) of the transverse and longitudinal tissue samples. The ultimate stress determined for the longitudinal axillary pouch tissue samples was comparable to a previous study that reported it to be 5.5 +/- 2.0 MPa. The ratio of the longitudinal to transverse moduli (3.3 +/- 2.8) is considerably less than that of the medial collateral ligament of the knee (30) and interosseous ligament of the forearm (385), suggesting that the axillary pouch functions to stabilize the joint in more than just one direction. Future models of the glenohumeral joint and surgical repair procedures should consider the properties of the axillary pouch in its transverse and longitudinal directions to fully describe the behavior of the inferior glenohumeral ligament.  相似文献   

7.
Plantar fascia (PF) is a heterogeneous thickness structure across plantar foot. It is important significance to investigate the biomechanical behavior of the medial, middle and lateral PF regions. To investigate the non-uniform macro/micro structures of the different PF regions, the uniaxial tensile test of PF strips were performed to assess the mechanical behavior of PF. A scanning electron microscope (SEM) was used to visualize and measure the micro morphology of PF associated with collagen fibers. A three-dimensional foot finite element (FE) model was developed to quantify the tensile behavior of the internal PF. The elastic modulus of the lateral PF component (1560 MPa) was observed, followed by the medial (701 MPa), the central (1100 MPa) and the lateral (714 MPa) portions in the central component. Elongation of the central portion (0.192) was lower than the medial (0.223) and the lateral (0.227) portions. The corresponding SEM images showed that the fibers of the central portion were more densely packed and thicker compared to the ambilateral portions in the central component. While the FE model prediction also suggested that the greater elastic modulus of the central PF portion had lower strain (0.192) versus the ambilateral portions. Therefore, the lower elongation and greater elastic modulus at the central portion of PF would probably have a high risk of PF injury. The findings showed a relation between the mechanical tension and fibrous morphology of PF. This information would have a better understanding of the PF pathophysiology diseases related to tear and injury of PF.  相似文献   

8.
The purpose of this study was to determine the relationships among muscle sound frequencies, muscle tension, and stiffness. Time-frequency transformations of nonstationary acoustic signals provided measures of resonant frequency during isometric contractions of frog (Rana pipiens) semitendinosus and gastrocnemius muscles. A mathematical expression for muscle transverse resonant frequency, elastic modulus and tension, based on elastic beam theory, was formulated by the Rayleigh method adapted for muscles. For thin muscles, the elastic modulus was found to have negligible influence on transverse muscle resonant frequency. Changes in muscle tension were the major determinants of changes in transverse resonant frequency. Consequently, for thin muscles, the time course of muscle tension, but not elastic modulus, can be monitored acoustically during the early phase of contraction when muscles give rise to sounds. Muscles were found to be anisotropic with a modulus of elasticity, EL, measured via length perturbations near 0.1% muscle length peak-to-peak, that was much larger than the modulus of elasticity, Eb, that resists the lateral bending that causes sound production. The elastic and resonant behavior of a thin muscle is similar to a tensioned fibrous cable with distributed mass.  相似文献   

9.
The objective of this study was to determine the mechanical properties of the posterior region of the glenohumeral capsule in the directions perpendicular (transverse) and parallel (longitudinal) to the longitudinal axis of the posterior band of the inferior glenohumeral ligament. A punch was used to excise one transverse and one longitudinal tissue sample from the posterior capsule of 11 cadaveric shoulders. All tissue samples exhibited the typical nonlinear behavior reported for ligaments and tendons. Significant differences (p < 0.05) were detected between the transverse and longitudinal tissue samples for ultimate stress (1.5+/-1.4 and 4.9+/-2.9 MPa, respectively) and tangent modulus (10.3+/-6.6 and 31.5+/-12.7 MPa, respectively). No significant differences (p > 0.05) were observed between the ultimate strain (transverse: 22.3+/-12.5%, longitudinal: 22.8+/-11.1%) and strain energy density (transverse: 27.2+/-52.8 MPa, longitudinal: 67.5+/-88.2 MPa) of the transverse and longitudinal tissue samples. The ratio of the longitudinal to transverse moduli (4.8+/-4.2) was similar to that found for the axillary pouch (3.3+/-2.8) in a previous study. Thus, both the axillary pouch and the posterior capsule function to stabilize the joint multi-axially. Future analytical models of the glenohumeral joint should consider the properties of the posterior capsule in its transverse and longitudinal directions to fully describe the behavior of the glenohumeral capsule. These models will be clinically important by providing a more accurate representation of the intact capsule as well as simulated capsular injuries and surgical repair procedures.  相似文献   

10.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

11.
Obstructive sleep apnea (OSA) affects a large percentage of the population and is increasingly recognized as a major global health problem. One surgical procedure for OSA is to implant polyethylene (PET) material into the soft palate, but its efficacy remains to be discussed. In this study, we provide input to this topic based on numerical simulations. Three 3 dimensional (3D) soft palate finite element models including mouth-close and mouth-open cases were created based on three patient-specific computed tomography (CT) images. A simplified material modeling approach with the Neo-Hookean material model was applied, and nonlinear geometry was accounted for. Young’s modulus for the implant material was obtained from uniaxial tests, and the PET implant pillars were inserted to the 3D soft palate model. With the finite element model, we designed different surgical schemes and investigated their efficacy with respect to avoiding the soft palate collapse. Several pillar schemes were tested, including different placement directions, different placement positions, different settings for the radius and the array parameters of the implant pillars, and different Young’s moduli for the pillars. Based on our simulation results, the longitudinal-direction implant surgery improved the stiffness of the soft palate to a small degree, and implanting in the transverse direction was evaluated to be a good choice for improving the existing surgical scheme. In addition, the Young’s modulus of the polyethylene material implants has an influence on the reinforcement efficacy of the soft palate.  相似文献   

12.
Recent experiments to characterize the short-range stiffness (SRS)–force relationship in several cat hindlimb muscles suggested that the there are differences in the tendon elastic moduli across muscles [Cui, L., Perreault, E.J., Maas, H., Sandercock, T.G., 2008. Modeling short-range stiffness of feline lower hindlimb muscles. J. Biomech. 41 (9), 1945–1952.]. Those conclusions were inferred from whole muscle experiments and a computational model of SRS. The present study sought to directly measure tendon elasticity, the material property most relevant to SRS, during physiological loading to confirm the previous modeling results. Measurements were made from the medial gastrocnemius (MG), tibialis anterior (TA) and extensor digitorum longus (EDL) muscles during loading. For the latter, the model indicated a substantially different elastic modulus than for MG and TA. For each muscle, the stress–strain relationship of the external tendon was measured in situ during the loading phase of isometric contractions conducted at optimum length. Young's moduli were assessed at equal strain levels (1%, 2% and 3%), as well as at peak strain. The stress–strain relationship was significantly different between EDL and MG/TA, but not between MG and TA. EDL had a more apparent toe region (i.e., lower Young's modulus at 1% strain), followed by a more rapid increase in the slope of the stress–strain curve (i.e., higher Young's modulus at 2% and 3% strain). Young's modulus at peak strain also was significantly higher in EDL compared to MG/TA, whereas no significant difference was found between MG and TA. These results indicate that during natural loading, tendon Young's moduli can vary considerably across muscles. This creates challenges to estimating muscle behavior in biomechanical models for which direct measures of tendon properties are not available.  相似文献   

13.
Lower extremity muscle activations during crossover and side step cut tasks are hypothesized to play an important role in controlling knee motion, and therefore, impact the design of knee injury prevention and rehabilitation programs. However, the contribution of lower extremity muscles to frontal and transverse plane moments during cutting tasks is unclear. The purpose of this study was to compare the muscle activation patterns of selected lower extremity muscles (vastus lateralis, medial/lateral hamstrings and medial/lateral gastrocnemius) of subjects performing a stepping down and side step cut, a stepping down and crossover cut and an equivalent straight ahead task. Ground reaction force was used to determine the cut angle, stance time and compare the lower limb loading during each task. Electromyography data during all tasks were normalized to the average activation during the straight ahead tasks to determine relative changes in muscle activation between the straight ahead and different cut styles (crossover and side step). There were no differences in the pattern of muscle activation of the vastus lateralis, or lateral hamstring muscles when comparing the cutting tasks to the equivalent straight ahead task. However, the crossover cut task resulted in significantly higher muscle activation of the medial hamstrings and lateral gastrocnemius muscles relative to both the side step cut and straight ahead tasks. These results suggest the medial/lateral hamstrings and medial/lateral gastrocnemius play a role in transverse and frontal plane control during cut tasks.  相似文献   

14.
Stress shielding-related bone loss occurs after total hip arthroplasty because the stiffness of metallic implants differs from that of the host femur. Although reducing stem stiffness can ameliorate the bone resorption, it increases stress at the bone–implant interface and can inhibit fixation. To overcome this complication, a novel cementless stem with a gradient in Young’s modulus was developed using Ti-33.6Nb-4Sn (TNS) alloy. Local heat treatment applied at the neck region for increasing its strength resulted in a gradual decrease in Young’s modulus from the proximal to the distal end, from 82.1 to 51.0 GPa as calculated by a heat transfer simulation. The Young’s modulus gradient did not induce the excessive interface stress which may cause the surface debonding. The main purpose of this study was to evaluate bone remodeling with the TNS stem using a strain-adaptive bone remodeling simulation based on finite element analysis. Our predictions showed that, for the TNS stem, bone reduction in the calcar region (Gruen zone 7) would be 13.6% at 2 years, 29.0% at 5 years, and 45.8% at 10 years postoperatively. At 10 years, the bone mineral density for the TNS stem would be 42.6% higher than that for the similar Ti-6Al-4V alloy stem. The stress–strength ratio would be lower for the TNS stem than for the Ti-6Al-4V stem. These results suggest that although proximal bone loss cannot be eliminated completely, the TNS stem with a Young’s modulus gradient may have bone-preserving effects and sufficient stem strength, without the excessive interface stress.  相似文献   

15.
Mechanical properties of metaphyseal bone in the proximal femur   总被引:4,自引:1,他引:3  
We used a three-point bending test to investigate the structural behavior of 123 rectangular flat plate specimens harvested from the metaphyseal shell of the cervical and intertrochanteric regions of five fresh/frozen human proximal femora. For comparison purposes, 36 specimens of similar geometry were also fabricated from bone of the femoral diaphysis. All specimens were oriented in either the local longitudinal or transverse directions. The mean longitudinal elastic modulus was 9650 +/- 2410 (SD) MPa and demonstrated a 24% decrease from that measured for the diaphysis (12500 +/- 2140 MPa) using the same testing technique. However, the transverse elastic moduli did not differ significantly between the proximal (5470 +/- 1720 MPa) and diaphyseal (5990 +/- 1520 MPa) specimens. The globally averaged values for the ultimate tensile strengths of the metaphyseal shell were 101 +/- 26 MPa in the longitudinal and 50 +/- 12 MPa in the transverse directions. These compared with diaphyseal values of 128 +/- 16 MPa and 47 +/- 12 MPa, respectively. While these differences were largely due to the reduced density of the proximal specimens, a slight decrease in transverse anisotropy for the proximal specimens was also noted by comparing the ratio of longitudinal to transverse moduli (1.76) and tensile strength (2.02) to the diaphyseal values (2.09 and 2.71, respectively). Use of these data should lead to improved performance of analytical models for the proximal femur, and thus help focus increased attention on the structural contribution of trabecular bone to the strength and rigidity of the proximal femur.  相似文献   

16.
One of an essential characteristic of human skin are time dependent mechanical properties. Here, we demonstrate that stiffness of human dermal fibroblast correlates with age and it can be restored after anti-wrinkle tripeptide treatment. The stiffness of human fibroblasts isolated from donors of 30-, 40- and 60 years old were examined. Additionally the effect of anti- wrinkle tripeptide of latter cells was investigated. The atomic force microscopy measurements were performed on untreated fibroblast as well as on treated with the peptide. The Young’s modulus for two indentation depths 200 and 600 nm of each cell type was determined. The Young’s modulus increases with age of the cells. The highest values of Young’s modulus were obtained for fibroblasts collected from 60 years old donors, for indentation depth of ~200 nm. For larger indentation depth of 600 nm there are no significant differences in stiffness between cells. Fibroblasts treated with the anti-wrinkle tripeptide exhibit lower Young’s modulus. The cells derived from 40- and 60-years old donors restored stiffness characteristic to the level of 30 years old subjects. The results show correlation between stiffness and age of the human fibroblast as well as impact of anti-wrinkle tripeptide on the mechanical properties of skin cells.  相似文献   

17.
The aim of this study was to examine the mechanical behavior of the colon using tensile tests under different loading speeds.Specimens were taken from different locations of the colonic frame from refrigerated cadavers. The specimens were submitted to uniaxial tensile tests after preconditioning using a dynamic load (1 m/s), intermediate load (10 cm/s), and quasi-static load (1 cm/s).A total of 336 specimens taken from 28 colons were tested. The stress-strain analysis for longitudinal specimens indicated a Young’s modulus of 3.17 ± 2.05 MPa under dynamic loading (1 m/s), 1.74 ± 1.15 MPa under intermediate loading (10 cm/s), and 1.76 ± 1.21 MPa under quasi-static loading (1 cm/s) with p < 0.001. For the circumferential specimen, the stress-strain curves indicated a Young’s modulus of 3.15 ± 1.73 MPa under dynamic loading (1 m/s), 2.14 ± 1.3 MPa under intermediate loading (10 cm/s), and 0.63 ± 1.25 MPa under quasi-static loading (1 cm/s) with p < 0.001. The curves reveal two types of behaviors of the colon: fast break behavior at high speed traction (1 m/s) and a lower break behavior for lower speeds (10 cm/s and 1 cm/s). The circumferential orientation required greater levels of stress and strain to obtain lesions than the longitudinal orientation. The presence of taeniae coli changed the mechanical response during low-speed loading.Colonic mechanical behavior varies with loading speeds with two different types of mechanical behavior: more fragile behavior under dynamic load and more elastic behavior for quasi-static load.  相似文献   

18.
The distally based anterolateral thigh flap has been used for coverage of soft-tissue defects of the knee and upper third of the leg. This flap is based on the septocutaneous or musculocutaneous perforators derived from the lateral circumflex femoral system. The purpose of this study was to examine the results of anatomical variations of the descending branch of the lateral circumflex femoral artery and the retrograde blood pressure of the descending branch of the lateral circumflex femoral artery so that the surgical technique for raising and transferring a distally based anterolateral thigh flap to the knee region could be improved. The authors have actually used this flap in three cases. In 11 thighs of six cadavers, the descending branch of the lateral circumflex femoral artery had a rather consistent connection with the lateral superior genicular artery or profunda femoral artery in the knee region. The pivot point, located at the distal portion of the vastus lateralis muscle, ranges from 3 to 10 cm above the knee. In their three cases, the maximal flap size was 7.0 x 16.0 cm and was harvested safely, without marginal necrosis. The mean pedicle length was 15.2 +/- 0.7 cm (range, 14.5 to 16 cm). The average proximal and distal retrograde blood pressure of the descending branch of the lateral circumflex femoral artery was also studied in another 11 patients, and the anterolateral thigh flap being used for reconstruction of head and neck defects showed 58.3 and 77.7 percent of proximal antegrade blood pressure, respectively. The advantages of this flap include a long pedicle length, a sufficient tissue supply, possible combination with fascia lata for tendon reconstruction, and favorable donor-site selection, without sacrifice of major vessels or muscles.  相似文献   

19.
Cortical bone tissue is an anisotropic material characterized by typically five independent elastic coefficients (for transverse isotropy) governing shear and longitudinal deformations in the different anatomical directions. It is well established that the Young’s modulus in the direction of the bone axis of long bones has a strong relationship with mass density. It is not clear, however, whether relationships of similar strength exist for the other elastic coefficients, for they have seldom been investigated, and the results available in the literature are contradictory. The objectives of the present work were to document the anisotropic elastic properties of cortical bone at the tibia mid-diaphysis and to elucidate their relationships with mass density. Resonant ultrasound spectroscopy (RUS) was used to measure the transverse isotropic stiffness tensor of 55 specimens from 19 donors. Except for Poisson’s ratios and the non-diagonal stiffness coefficient, strong linear correlations between the different elastic coefficients \((0.7 < {r^{2}} < 0.99)\) and between these coefficients and density \((0.79 < {r^{2}} < 0.89)\) were found. Comparison with previously published data from femur specimens suggested that the strong correlations evidenced in this study may not only be valid for the mid-tibia. RUS also measures the viscous part of the stiffness tensor. An anisotropy ratio close to two was found for damping coefficients. Damping increased as the mass density decreased. The data suggest that a relatively accurate estimation of all the mid-tibia elastic coefficients can be derived from mass density. This is of particular interest (1) to design organ-scale bone models in which elastic coefficients are mapped according to Hounsfield values from computed tomography scans as a surrogate for mass density and (2) to model ultrasound propagation at the mid-tibia, which is an important site for the in vivo assessment of bone status with axial transmission techniques.  相似文献   

20.
Hereditary spherocytosis (HS), an erythrocyte membranopathy, is a heterogeneous disease, even at the level of the erythrocyte population. The paper aims at studying the mechanical properties (the Young’s modulus, median and RMS roughness of friction force maps; fractal dimension, lacunarity and spatial distribution parameters of lateral force maps) of the cell surface layer of the erythrocytes of two different morphologies (discocytes and spherocytes) in HS using atomic force microscopy. The results of spatial-spectral and fractal analysis showed that the mechanical property maps of the HS spherocyte surface were more structurally homogeneous compared to the maps of HS discocytes. HS spherocytes also had a reduced RMS roughness and lacunarity of the mechanical property maps. The Young’s modulus and averaged friction forces over the microscale HS spherocyte surface regions were approximately 20% higher than that of HS discocytes. The revealed significant difference at the nano- and microscales in the structural and mechanical properties of main (discoidal and spheroidal) morphological types of HS erythrocytes can potentially cause blood flow disturbance in the vascular system in HS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号