首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

2.
Larger trunk and pelvic motions in persons with (vs. without) lower limb amputation during activities of daily living (ADLs) adversely affect the mechanical demands on the lower back. Building on evidence that such altered motions result in larger spinal loads during level-ground walking, here we characterize trunk-pelvic motions, trunk muscle forces, and resultant spinal loads among sixteen males with unilateral, transfemoral amputation (TFA) walking at a self-selected speed both up (“upslope”; 1.06 ± 0.14 m/s) and down (“downslope”; 0.98 ± 0.20 m/s) a 10-degree ramp. Tri-planar trunk and pelvic motions were obtained (and ranges-of-motion [ROM] computed) as inputs for a non-linear finite element model of the spine to estimate global and local muscle (i.e., trunk movers and stabilizers, respectively) forces, and resultant spinal loads. Sagittal- (p = 0.001), frontal- (p = 0.004), and transverse-plane (p < 0.001) trunk ROM, and peak mediolateral shear (p = 0.011) and local muscle forces (p = 0.010) were larger (respectively 45, 35, 98, 70, and 11%) in upslope vs. downslope walking. Peak anteroposterior shear (p = 0.33), compression (p = 0.28), and global muscle (p = 0.35) forces were similar between inclinations. Compared to previous reports of persons with TFA walking on level ground, 5–60% larger anteroposterior and mediolateral shear observed here (despite ∼0.25 m/s slower walking speeds) suggest greater mechanical demands on the low back in sloped walking, particularly upslope. Continued characterization of trunk motions and spinal loads during ADLs support the notion that repeated exposures to these larger-than-normal (i.e., vs. level-ground walking in TFA and uninjured cohorts) spinal loads contribute to an increased risk for low back injury following lower limb amputation.  相似文献   

3.
Lower limb amputation substantially disrupts motor and proprioceptive function. People with lower limb amputation experience considerable impairments in walking ability, including increased fall risk. Understanding the biomechanical aspects of the gait of these patients is crucial in improving their gait function and their quality of life. In the present study, 9 persons with unilateral transtibial amputation and 13 able-bodied controls walked on a large treadmill in a Computer Assisted Rehabilitation Environment (CAREN). While walking, subjects were either not perturbed, or were perturbed either by continuous mediolateral platform movements or by continuous mediolateral movements of the visual scene. Means and standard deviations of both step lengths and step widths increased significantly during both perturbation conditions (all p<0.001) for both groups. Measures of variability, local and orbital dynamic stability of trunk movements likewise exhibited large and highly significant increases during both perturbation conditions (all p<0.001) for both groups. Patients with amputation exhibited greater step width variability (p=0.01) and greater trunk movement variability (p=0.04) during platform perturbations, but did not exhibit greater local or orbital instability than healthy controls for either perturbation conditions. Our findings suggest that, in the absence of other co-morbidities, patients with unilateral transtibial amputation appear to retain sufficient sensory and motor function to maintain overall upper body stability during walking, even when substantially challenged. Additionally, these patients did not appear to rely more heavily on visual feedback to maintain trunk stability during these walking tasks.  相似文献   

4.
Walking on uneven surfaces or while undergoing perturbations has been associated with increased gait variability in both modeling and human studies. Previous gait research involving continuous perturbations has focused on sinusoidal oscillations, which can result in individuals predicting the perturbation and/or entraining to it. Therefore, we examined the effects of continuous, pseudo-random support surface and visual field oscillations on 12 healthy, young participants. Participants walked in a virtual reality environment under no perturbation (NOP), anterior–posterior (AP) walking surface and visual oscillation and mediolateral (ML) walking surface and visual oscillation conditions. Participants exhibited shorter (p≤0.005), wider (p<0.001) and faster (p<0.001) steps relative to NOP during ML perturbations and shorter (p≤0.005) and wider (p<0.001) steps during AP perturbations. Step length variability and step width variability both increased relative to NOP during all perturbation conditions (p<0.001) but exhibited greater increases for the ML perturbations (p<0.001). Participants exhibited greater trunk position variability and trunk velocity variability in the ML direction than in the AP direction during ML perturbations relative to NOP (p<0.001). Significantly greater variability in the ML direction indicates that to maintain stability, participants needed to exert greater control in the ML direction. This observation is consistent with prior modeling predictions. The large and consistent responses observed during ML visual and walking surface perturbations suggest potential for application during gait training and patient assessment.  相似文献   

5.
Dynamic stability of passive dynamic walking on an irregular surface   总被引:1,自引:0,他引:1  
Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; p<0.001) and short-term local instability increased linearly (r(2)=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.  相似文献   

6.
A number of studies have examined the functional roles of individual muscles during normal walking, but few studies have examined which are the primary muscles that respond to changes in external mechanical demand. Here we use a novel combination of experimental perturbations and forward dynamics simulations to determine how muscle mechanical output and contributions to body support and forward propulsion are modulated in response to independent manipulations of body weight and body mass during walking. Experimentally altered weight and/or mass were produced by combinations of added trunk loads and body weight support. Simulations of the same experimental conditions were used to determine muscle contributions to the vertical ground reaction force impulse (body support) and positive horizontal trunk work (forward propulsion). Contributions to the vertical impulse by the soleus, vastii and gluteus maximus increased (decreased) in response to increases (decreases) in body weight; whereas only the soleus increased horizontal work output in response to increased body mass. In addition, soleus had the greatest absolute contribution to both vertical impulse and horizontal trunk work, indicating that it not only provides the largest contribution to both body support and forward propulsion, but the soleus is also the primary mechanism to modulate the mechanical output of the leg in response to increased (decreased) need for body support and forward propulsion. The data also showed that a muscle's contribution to a specific task is likely not independent of its contribution to other tasks (e.g., body support vs. forward propulsion).  相似文献   

7.
Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m×3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.  相似文献   

8.
Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis.  相似文献   

9.
Although trunk muscle function has been suggested to be a determinant of judo performance, its contribution to high-level performance in this sport has been poorly studied. Therefore, several tests were used to assess the differences in trunk muscle function between 11 international and 14 national level judo practitioners (judokas). Trunk strength and endurance were assessed using isokinetic tests and core stability was assessed using two protocols: 1) sudden loading, to assess trunk responses to unexpected external perturbations; 2) stable and unstable sitting, to assess the participants’ ability to control trunk balance. No differences between groups were found for trunk flexor isokinetic strength, trunk responses against lateral and posterior loading and trunk control while sitting. However, international level judokas showed significantly higher trunk extensor isokinetic strength (p <0.05) and lower trunk angular displacement after anterior trunk loading (p <0.05) than national level judokas. Few and low (r < 0.512) significant correlations were found between strength, endurance and stability parameters, which suggests that trunk strength and endurance are not limiting factors for trunk stability in competitive judokas. These results support the importance of trunk extensor strength and trunk stability against forward perturbations in elite judo performance.  相似文献   

10.
Soldiers routinely conduct load carriage and physical training to meet occupational requirements. These tasks are physically arduous and are believed to be the primary cause of musculoskeletal injury. Physical training can help mitigate injury risk when specifically designed to address injury mechanisms and meet task demands. This study aimed to assess lower-limb biomechanics and neuromuscular adaptations during load carriage walking in response to a 10-week evidence-based physical training program. Thirteen male civilian participants donned 23 kg and completed 5 km of load carriage treadmill walking, at 5.5 km h−1 before and after a 10-week physical training program. Three-dimensional motion capture and force plate data were acquired in over-ground walking trials before and after treadmill walking. These data were inputs to a musculoskeletal model which estimated lower-limb joint kinematics and kinetics (i.e., moments and powers) using inverse kinematics and dynamics, respectively. A two-way analysis of variance revealed significant main effect of training for kinematic and kinetics parameters at the knee and ankle joints (p < 0.05). Post-Hoc comparisons demonstrated a significant decrease (4.2%) in total negative knee power between pre- and post-March 5 km measures after training (p < 0.05). Positive power contribution shifted distally after training, increasing at the post-march measure from 39.9% to 43.6% at the ankle joint (p < 0.05). These findings demonstrate that a periodised training program may reduce injury risk through favourable ankle and knee joint adaptations.  相似文献   

11.
External perturbations applied to the walking surface or visual field can challenge an individual's ability to maintain stability during walking. Accurately quantifying and predicting changes in stability during walking will further our understanding of how individuals respond to challenges encountered during daily life and guide the development of assessments and rehabilitation interventions for individuals at increased risk of falling. This study is the first to determine how orbital and local dynamic stability metrics, including maximum Floquet multipliers and local divergence exponents, change in response to continuous mediolateral visual and surface perturbations of different amplitudes. Eleven healthy individuals walked in a fully immersive virtual environment. Participants completed two 3-min walking trials each under the following nine conditions: no perturbations, surface perturbations at each of 3 amplitudes, and visual perturbations at each of 5 amplitudes. All perturbations were applied as continuous pseudo-random oscillations. During both surface and visual perturbations, individuals were significantly more orbitally and locally unstable compared to un-perturbed walking. As walking surface perturbation amplitudes increased, individuals were more orbitally (but not locally) unstable. As visual perturbation amplitudes increased, individuals were more locally (but not orbitally) unstable between lower and higher amplitudes. Overall, these dynamic stability metrics were much less sensitive to changes in perturbation amplitudes than to differences between un-perturbed and perturbed walking, or to differences between mechanical and visual perturbations. This suggests that the type of perturbation(s) applied has a far greater impact than the magnitude of those perturbations in determining the response that will be elicited.  相似文献   

12.
External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury.  相似文献   

13.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes.  相似文献   

14.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

15.
The use of motor learning strategies may enhance rehabilitation outcomes of individuals with neurological injuries (e.g., stroke or cerebral palsy). A common strategy to facilitate learning of challenging tasks is to use sequential progression – i.e., initially reduce task difficulty and slowly increase task difficulty until the desired difficulty level is reached. However, the evidence related to the use of such sequential progressions to improve learning is mixed for functional skill learning tasks, especially considering situations where practice duration is limited. Here, we studied the benefits of sequential progression using a functional motor learning task that has been previously used in gait rehabilitation. Three groups of participants (N = 43) learned a novel motor task during treadmill walking using different learning strategies. Participants in the specific group (n = 21) practiced only the criterion task (i.e., matching a target template that was scaled-up by 30%) throughout the training. Participants in the sequential group (n = 11) gradually progressed to the criterion task (from 3% to 30% in increments of 3%), whereas participants in the random group (n = 11) started at 3% and progressed in random increments (involving both increases and decreases in task difficulty) to the criterion task. At the end of training, kinematic tracking performance on the criterion task was evaluated in all participants both with and without visual feedback. Results indicated that the tracking error was significantly lower in the specific group, and no differences were observed between the sequential and the random progression groups. The findings indicate that the amount of practice in the criterion task is more critical than the difficulty and variations of task practice when learning new gait patterns during treadmill walking.  相似文献   

16.
A large body of experimental and theoretical work on neural coding suggests that the information stored in brain circuits is represented by time-varying patterns of neural activity. Reservoir computing, where the activity of a recurrently connected pool of neurons is read by one or more units that provide an output response, successfully exploits this type of neural activity. However, the question of system robustness to small structural perturbations, such as failing neurons and synapses, has been largely overlooked. This contrasts with well-studied dynamical perturbations that lead to divergent network activity in the presence of chaos, as is the case for many reservoir networks. Here, we distinguish between two types of structural network perturbations, namely local (e.g., individual synaptic or neuronal failure) and global (e.g., network-wide fluctuations). Surprisingly, we show that while global perturbations have a limited impact on the ability of reservoir models to perform various tasks, local perturbations can produce drastic effects. To address this limitation, we introduce a new architecture where the reservoir is driven by a layer of oscillators that generate stable and repeatable trajectories. This model outperforms previous implementations while being resistant to relatively large local and global perturbations. This finding has implications for the design of reservoir models that capture the capacity of brain circuits to perform cognitively and behaviorally relevant tasks while remaining robust to various forms of perturbations. Further, our work proposes a novel role for neuronal oscillations found in cortical circuits, where they may serve as a collection of inputs from which a network can robustly generate complex dynamics and implement rich computations.  相似文献   

17.
Coordination of the trunk and hips is crucial for successful dynamic balance in many activities of daily living. Persons with recurrent low back pain (rLBP), both while symptomatic and during periods of symptom remission, exhibit dysfunctional muscle activation patterns and coordination of these joints. In a novel dynamic balance task where persons in remission from rLBP exhibit dissociated trunk motion, it is unknown how trunk and hip musculature are coordinated. Activation of hip and trunk muscles were acquired from nineteen persons with and without rLBP during the Balance-Dexterity Task, which involves balancing on one limb while compressing an unstable spring with the other. There were no between-group differences in activation amplitude for any muscle groups tested. In back-healthy control participants, hip and trunk muscle activation amplitudes increased proportionally in response to the added instability of the spring (R = 0.837, p < 0.001). Increases in muscle activation amplitudes in the group in remission from rLBP were not proportional (R = 0.113, p = 0.655). Instead, hip muscle activation in this group was associated with task performance, i.e. dexterous control of the spring (R = 0.676, p = 0.002). These findings highlight atypical coordination of hip and trunk musculature potentially related to task demands in persons with rLBP even during remission from pain.  相似文献   

18.
Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-min walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p<0.010). AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p<0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p<0.050) and MOS variability (p<0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p<0.005); mean and variability of the range of COM motion (p<0.010); and variability of COM peak velocity (p<0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved lateral stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected lateral walking stability during platform perturbations.  相似文献   

19.
Standing postural control is known to be altered during aging, but age-related changes in sitting postural control have scarcely been explored. The present experiment studied the roles of visual and haptic information in a sitting task in both young and older adults. Fifteen young and fifteen older adults participated in this study. Six experimental conditions were performed with eyes open and eyes closed: quiet sitting, rocker-board sitting, and 4 conditions of haptic supplementation, provided by a hand-held pen, during rocker-board sitting. Classical variables were extracted from the center of pressure (COP) and pen trajectories, and the stabilogram diffusion analysis was performed on the COP data. Three-way ANOVAs (Group × Vision × Condition) were carried out.Postural instability was strongly attenuated by haptic supplementation in both age groups. Furthermore, instability due to visual deprivation was compensated by haptic supplementation. Long- and short-term diffusion coefficients were smaller in conditions of haptic supplementation. The present study confirmed the effect of haptic supplementation on both open-loop and closed-loop mechanisms of postural control and extended it to unstable sitting in young and older adults despite the complex biomechanical systems involved in sitting postural tasks.  相似文献   

20.
The human head-neck system requires continuous stabilization in the presence of gravity and trunk motion. We investigated contributions of the vestibulocollic reflex (VCR), the cervicocollic reflex (CCR), and neck muscle co-contraction to head-in-space and head-on-trunk stabilization, and investigated modulation of the stabilization strategy with the frequency content of trunk perturbations and the presence of visual feedback.We developed a multisegment cervical spine model where reflex gains (VCR and CCR) and neck muscle co-contraction were estimated by fitting the model to the response of young healthy subjects, seated and exposed to anterior-posterior trunk motion, with frequency content from 0.3 up to 1, 2, 4 and 8 Hz, with and without visual feedback.The VCR contributed to head-in-space stabilization with a strong reduction of head rotation (<8 Hz) and a moderate reduction of head translation (>1 Hz). The CCR contributed to head-on-trunk stabilization with a reduction of head rotation and head translation relative to the trunk (<2 Hz). The CCR also proved essential to stabilize the individual intervertebral joints and prevent neck buckling. Co-contraction was estimated to be of minor relevance. Control strategies employed during low bandwidth perturbations most effectively reduced head rotation and head relative displacement up to 3 Hz while control strategies employed during high bandwidth perturbations reduced head global translation between 1 and 4 Hz. This indicates a shift from minimizing head-on-trunk rotation and translation during low bandwidth perturbations to minimizing head-in-space translation during high bandwidth perturbations. Presence of visual feedback had limited effects suggesting increased usage of vestibular feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号