首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Falls are a serious problem faced by the elderly. Older adults report mostly to fall while performing locomotor activities, especially the ones requiring stair negotiation. During these tasks, older adults, when compared with young adults, seem to redistribute their lower limb joint moments. This may indicate that older adults use a different strategy to accelerate the body upward during these tasks. The purposes of this study were to quantify the contributions of each lower limb joint moment to vertically accelerate the center of mass during stair ascent and descent, in a sample of community-dwelling older adults, and to verify if those contributions were correlated with age and functional fitness level. A joint moment induced acceleration analysis was performed in 29 older adults while ascending and descending stairs at their preferred speed. Agreeing with previous studies, during both tasks, the ankle plantarflexor and the knee extensor joint moments were the main contributors to support the body. Although having a smaller contribution to vertically accelerate the body, during stair descent, the hip joint moment contribution was related with the balance score. Further, older adults, when compared with the results reported previously for young adults, seem to use more their knee extensor moment than the ankle plantarflexor moment to support the body when the COM downward velocity is increasing. By contributing for a better understanding of stair negotiation in community dwelling older adults, this study may help to support the design of interventions aiming at fall prevention and/or mobility enhancement within this population.  相似文献   

2.
This study evaluated the reactive biomechanical strategies associated with both upper- and lower-body (lead and trail limbs) following the first exposures to (un)expected stepdown at comfortable (1.22 ± 0.08 m/s) and fast (1.71 ± 0.11 m/s) walking velocities. Eleven healthy adults completed 34 trails per walking velocity over an 8-m, custom-built track with two forceplates embedded in its center. For the expected stepdown, the track was lowered by 0-, −10- and −20-cm from the site of the second forceplate, whereas the unexpected stepdown was created by camouflaging the second forceplate (−10-cm). Two-way repeated-measurement ANOVAs detected no velocity-related effects of stepdown on kinematic and kinetic parameters during lead limb stance-phase, and on the trail limb stepping kinematics. However, analyses of significant interactions revealed greater peak flexion angles across the trunk and the trail limb joints (hip, knee and ankle) in unexpected versus expected stepdown conditions at a faster walking velocity. The −10-cm unexpected stepdown (main effect) had a greater influence on locomotor behavior compared to expected conditions due mainly to the absence of predictive adjustments, reflected by a significant decrease in peak knee flexion, contact time and vertical impulse during stance-phase. Walking faster (main effect) was associated with an increase in hip peak flexion and net anteroposterior impulse, and a decrease in contact time and vertical impulse during stepdown. The trail limb, in response, swung forward faster, generating a larger and faster recovery step. However, such reactive stepping following unexpected stepdown was yet a sparse compensation for an unstable body configuration, assessed by significantly smaller step width and anteroposterior margin-of-stability at foot-contact in the first-recovery-step compared with expected conditions. These findings depict the impact of the expectedness of stepdown onset on modulation of global dynamic postural control for a successful accommodation of (un)expected surface elevation changes in young, healthy adults.  相似文献   

3.
Previous findings from studies of demanding tasks in humans and slope walking in quadrupeds suggest that human slope walking may require specialized neural control strategies. The goal of this investigation was to gain insight into these strategies by quantifying lower limb kinematics and kinetics during up- and downslope walking. Nine healthy volunteers walked at a self-selected speed on an instrumented ramp at each of five grades (-39%, -15%, 0%, +15%, +39%; or -21 degrees, -8.5 degrees, 0 degrees, +8.5 degrees, +21 degrees, respectively). For each subject, the selected speed was maintained at all grades to minimize the effect of speed on gait dynamics. Points of interest were identified in the kinematic and kinetic outcome measures and compared across grades; a significant grade effect was found for all points except the magnitude of the peak hip extensor moment during late stance. Kinematic postural changes were consistent with the need to raise the limb for toe clearance and heel strike and to lift the body during upslope walking, and to control the descent of the body during downslope walking. The support moment increased significantly during both upslope and downslope walking compared to level: the increases were predominantly due to the increasing hip extensor moment during upslope walking, and to the increasing knee extensor moment during downslope walking. In addition, the hip and knee joint moment patterns showed significant differences from the patterns observed during level walking. This non-uniform distribution of joint moment increases during up- and downslope walking compared to level walking suggests that these three tasks are not governed by the same control strategy.  相似文献   

4.
To investigate the biomechanical strategy adopted by older adults with medial compartment knee osteoarthritis (OA) for successful obstacle crossing with the trailing limb, and to discuss its implications for fall-prevention, 15 older adults with bilateral medial compartment knee OA and 15 healthy controls were recruited to walk and cross obstacles of heights of 10%, 20%, and 30% of their leg lengths. Kinematic and kinetic data were obtained using a three-dimensional (3D) motion analysis system and forceplates. The OA group had higher trailing toe clearance than the controls. When the trailing toe was above the obstacle, the OA group showed greater swing hip abduction, yet smaller stance hip adduction, knee flexion, and ankle eversion. They showed greater pelvic anterior tilt and toe-out angle. They also exhibited greater peak knee abductor moments during early stance and at the instant when the swing toe was above the obstacle, while a greater peak hip abductor moment was found during late stance. Smaller knee extensor, yet greater hip extensor moments, were found in the OA group throughout the stance phase. In order to achieve higher toe clearance with knee OA, particular joint kinematic and kinetic strategies have been adopted by the OA group. Weakness in the hip abductors and extensors in individuals with OA may be risk factors for tripping owing to the greater demands on these muscle groups during obstacle crossing by these individuals.  相似文献   

5.
Recovery from a large perturbation, such as a slip, can be successful when stability of movement can be reestablished with protective stepping. Nevertheless, one dilemma for executing a protective step is that its liftoff can weaken support against limb collapse. This study investigated whether failures in limb support leading to falls after a protective step result from insufficient joint moment generation, and whether such insufficiency is greater among older fallers. A novel, unexpected slip was induced immediately following seat-off during a sit-to-stand. Joint work and mechanical energy were calculated for 43 young (9 falls, 34 recoveries) and 22 older (13 falls, 9 recoveries) adults who responded with a protective step. Comparisons of the work produced at three joints of the bilateral lower limbs revealed that insufficient concentric knee and hip extensor work prior to step liftoff was a primary differentiating factor between falling and recovery, regardless of age. Also, during stepping, fallers regardless of age failed to limit the eccentric knee extensor work at their stance limb sufficiently to retard rapid knee flexion and the consequent potential energy loss. We concluded that young and older fallers had comparable weak limb support. The greater fall incidence among the older adults likely resulted from a greater proportion of subjects who responded to the slip with insufficient knee extensor support, possibly attributable to age-differences in chair-rising. One strategy to address this dilemma may rely on task-specific training to enhance feedforward control that improves movement stability, and thus lessens the reliance on protective stepping.  相似文献   

6.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

7.
Long sit-to-stand (STS) time has been identified as a feature of impaired functional mobility. The changes in biomechanics of STS performance with simultaneous hip adductor contraction have not been studied, which may limit indications for use of hip adductor activation during STS training.Ten individuals with hemiplegia (mean age 61.8 years, injury time 29.8 ± 15.2 months) performed the STS with and without squeezing a ball between two legs. The joint moments, ground reaction force (GRF), chair reaction force and movement durations and temporal index of electromyography were calculated from the control condition for comparison with those from the ball squeezing condition.Under the squeeze condition, reduced peak vertical GRF during the ascension phase with increased loading rate was observed in the nonparetic limb, and the peak knee extensor moment occurred earlier in the paretic. Earlier activation of tibialis anterior and gluteus maximus, and gluteus medius were found in squeeze STS.Squeezing a ball between limbs during STS increased the contraction timing of tibialis anterior, gluteus maximus, gluteus medius, and soleus as well as a more symmetric rising mechanics encourage the use of squeezing a ball between limbs during STS for individuals with hemiparesis.  相似文献   

8.
There appears a linear relationship between small increases in running speed and cardiovascular health benefits. Encouraging or coaching recreational runners to increase their running speed to derive these health benefits might be more effective if their joint level kinematic and kinetic strategy was understood. The aim of this investigation was to compare the peak sagittal plane motions, moments, and powers of the hip, knee and ankle at 85%, 100%, 115% and 130% of self-selected running speed. Overground running data were collected in 12 recreational runners (6 women, 6 men) with a full body marker set using a 12-camera Vicon MX system with an AMTI force plate. Kinematics and kinetics were analyzed with Vicon Nexus software. Participants chose to run at 2.6 ± 0.5 m/s (85%); 3.0 ± 0.5 m/s (100%); 3.3 ± 0.5 m/s (115%); and 3.7 ± 0.5 m/s (130%); these four speeds approximately correspond to 6:24-, 5:33-, 5:03-, and 4:30-min kilometer running paces. Running speed had a significant effect (P < 0.05) on peak kinematic and kinetic variables of the hips, knees and ankles, with peak sagittal hip moments invariant (P > 0.54) and the peak sagittal ankle power generation (P < 0.0001) the most highly responsive variable. The timing of the peak sagittal extensor moments and powers at the hip, knee and ankle were distributed across stance in a sequential manner. This study shows that running speed affects lower limb joint kinematics and kinetics and suggests that specific intersegmental kinetic strategies might exist across the narrow range of running speeds.  相似文献   

9.
The effect of the heel height on the temporal, kinematic and kinetic parameters was investigated in 16 young and 11 elderly females. Kinematic and kinetic data were collected when the subjects ascended stairs with their preferred speed in two conditions: wearing low-heeled shoes (LHS), and high-heeled shoes (HHS). The younger adults showed more adjustments in forces and moments at the knee and hip in frontal and transverse planes. Besides a few significantly changes in joint forces and moments, the elder group demonstrated longer cycle duration and double stance phase, larger trunk sideflexion and hip internal rotation, less hip adduction while wearing HHS. Most differences in joint motions between two groups were found at the hip and knee either in LHS or HHS condition. Instead, the differences in moment occurred at the hip joint and only in HHS. The interaction of the heel height and age showed the influences of heel height on trunk rotation, hip abduction/adduction, and knee and hip force and moment at the frontal plane depended on age. These phenomena suggest that younger and elderly women adapt their gait and postural control differently during stair ascent (SA) while wearing HHS.  相似文献   

10.
The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk''s natural inclination - forward (FW) or backward (BW) with respect to the vertical - on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb''s heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.  相似文献   

11.
Biomechanics of below-knee amputee gait   总被引:6,自引:0,他引:6  
Sagittal plane biomechanical and EMG analyses from eight below knee (B/K) amputee trials demonstrate considerably modified motor patterns from the residual muscles at the hip and knee. Five SACH fittings, two Uniaxial and one Gressinger prostheses were analysed. Moments of force and mechanical power were analysed on all eight trials and EMG profiles are reported for three of the amputees fitted with SACH prostheses. The findings can be summarized as follows: 1. All eight trials had similar internal moment of force patterns at the ankle. A dorsiflexor moment commenced at heel contact and continued for the first third of stance. The prostheses generated a plantarflexor moment for the balance of stance which increased in late stance to about 2/3 that seen in normals. 2. The two Uniaxial prostheses showed a 20% recovery of stored energy which was returned at push-off. The recovery by the Gressinger fitting was 30%. 3. For all but the Gressinger prosthesis the knee moment of force was negligible during early stance (when normals have an extensor moment), below normal in late stance and fairly normal during swing. The amputee wearing the Gressinger prosthesis had a normal but slightly reduced pattern of moments of force over the entire stride. 4. All eight trials had hyperactive hip extensors during early and mid-stance which resulted in above-normal energy generation by these concentrically contracting muscles. This compensation makes up for the loss of the major energy generation by the plantarflexors at push-off. 5. The moment of force and power patterns at the hip for all eight trials during late stance and swing were fairly normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The role of intersegmental dynamics during rapid limb oscillations   总被引:4,自引:0,他引:4  
The interactive dynamic effects of muscular, inertial and gravitational moments on rapid, multi-segmented limb oscillations were studied. Using three-segment, rigid-body equations of motion, hip, knee and ankle intersegmental dynamics were calculated for the steady-state cycles of the paw-shake response in adult spinal cats. Hindlimb trajectories were filmed to obtain segmental kinematics, and myopotentials of flexors and extensors at each of the three joints were recorded synchronously with the ciné film. The segmental oscillations that emerged during the paw-shake response were a consequence of an interplay between active and passive musculotendinous forces, inertial forces, and gravity. During steady-state oscillations, the amplitudes of joint excursions, peak angular velocities, and peak angular accelerations increased monotonically and significantly in magnitude from the proximal joint (hip) to the most distal joint (ankle). In contrast to these kinematic relationships, the maximal values of net moments at the hip and knee were equal in magnitude, but of significantly lower magnitude than the large net moment at the ankle joint. At both the ankle and the knee, the flexor and extensor muscle moments were equal, but at the hip the magnitude of the peak flexor muscle moment was significantly greater than the extensor muscle moment. Muscle moments at the hip not only acted to counterbalance accelerations of the more distal segments, but also acted to maintain the postural orientation of the hindlimb. Large muscle moments at the knee functioned to counterbalance the large inertial moments generated by the large angular accelerations of the paw. At the ankle, the muscle moments dominated the generation of the paw accelerations. At the ankle and the knee, muscle moments controlled limb dynamics by slowing and reversing joint motions, and the active muscle forces contributing to ankle and knee moments were derived from lengthening of active musculotendinous units. In contrast to the more distal joints, the active muscles crossing the hip predominantly shortened as a result of the interplay among inertial forces and gravitational moments. The muscle function and kinetic data explain key features of the complex interactions that occur between central control mechanisms and multi-segmented, oscillating limb segments during the paw-shake response.  相似文献   

13.
An integrated biomechanical analysis of normal stair ascent and descent   总被引:13,自引:2,他引:11  
Three normal males of similar height and weight ascended and descended a five step staircase with a riser height of 22 cm and a tread of 28 cm. EMG, force plate and cine data were collected for the stride over the second to fourth step during each mode. Kinematic and kinetic analyses were integrated with EMG to yield an interpretation of the mechanics of normal stair walking. Movement from one step to the next involved simultaneous lifting and horizontal translation of the body, and each stride showed specific phases for progression. The extensor muscles about the knee played a dominant role in progression from one step to the next in both modes coupled with the ankle plantar flexors. The total lower limb extensor pattern, called the support moment, was highly correlated between subjects and to level walking. Intra- and inter-subject variability of the motor patterns were also determined. The greatest variability was seen at the hip, while stereotypic kinetic patterns emerged at the ankle and knee for all subjects across the 24 trials of each mode.  相似文献   

14.
The plantarflexor, hip extensor and hip flexor muscle groups contribute by their concentric action to generate most of the energy during level gait in healthy subjects. The goal of the present study was to determine, during the main energy generation phases, the relative demand of these three groups in 14 healthy subjects walking at four cadences (self-selected, 60, 80 and 120 steps/min). The muscular utilization ratio (MUR), that compares the net joint moment obtained during gait to the maximal potential moment (MPM) at each percentage of the gait cycle, was used to estimate the mechanical relative demand. The MPM values were obtained by regression equations developed from torque data measured with a Biodex dynamometric system. The results showed that the peak MURs increased with gait cadence. The peak values were not significantly different between sides for all cadences despite mean absolute lateral differences ranging from 7% to 10%. The mean peak MURs of both sides ranged from 51.3% to 62.6%, from 20.7% to 49.9% and from 14.9% to 42.5%, for the plantarflexors, hip flexors and hip extensors, respectively. Highly significant associations were found between the MURs and net moments (numerator of the MUR ratio), with Pearson coefficients (r) superior to 0.80 for all muscles groups. The association between the MURs and the maximal potential moments (denominator of MUR ratio) was lower (0.01相似文献   

15.
Ascending stairs is a challenging activity of daily living for many populations. Frontal plane joint dynamics are critical to understand the mechanisms involved in stair ascension as they contribute to both propulsion and medio-lateral stability. However, previous research is limited to understanding these dynamics while initiating stair ascent from a stand. We investigated if initiating stair ascent from a walk with a comfortable self-selected speed could affect the frontal plane lower-extremity joint moments and powers as compared to initiating stair ascent from a stand and if this difference would exist at consecutive ipsilateral steps on the stairs. Kinematics data using a 3-D motion capture system and kinetics data using two force platforms on the first and third stair treads were recorded simultaneously as ten healthy young adults ascended a custom-built staircase. Data were collected from two starting conditions of stair ascent, from a walk (speed: 1.42 ± 0.21 m/s) and from a stand. Results showed that subjects generated greater peak knee abductor moment and greater peak hip abductor moment when initiating stair ascent from a walk. Greater peak joint moments and powers at all joints were also seen while ascending the second ipsilateral step. Particularly, greater peak hip abductor moment was needed to avoid contact of the contralateral limb with the intermediate step by counteracting the pelvic drop on the contralateral side. This could be important for therapists using stair climbing as a testing/training tool to evaluate hip strength in individuals with documented frontal plane abnormalities (i.e. knee and hip osteoarthritis, ACL injury).  相似文献   

16.
The present study investigated the influence of additional loads on the knee net joint moment, flexor and extensor muscle group moments, and cocontraction index during a closed chain exercise. Loads of 8, 28, or 48 kg (i.e., respectively, 11.1 ± 1.5%, 38.8 ± 5.3%, and 66.4 ± 9.0% of body mass) were added to subjects during dynamic half squats. The flexor and extensor muscular moments and the amount of cocontraction were estimated at the knee joint using an EMG-and-optimization model that includes kinematics, ground reaction, and EMG measurements as inputs. In general, our results showed a significant influence of the Load factor on the net knee joint moment, the extensor muscular moment, and the flexor muscle group moment (all Anova p < .05). Hence we confirmed an increase in muscle moments with increasing load and moreover, we also showed an original “more than proportional” evolution of the flexor and extensor muscle group moments relative to the knee net joint moment. An influence of the Phase (i.e., descent vs. ascent) factor was also seen, revealing different activation strategies from the central nervous system depending on the mode of contraction of the agonist muscle group. The results of the present work could find applications in clinical fields, especially for rehabilitation protocols.  相似文献   

17.
The effectiveness of the plantarflexor muscle group to generate desired plantarflexion moments is modulated by the geometry of the Achilles tendon moment arm (ATMA). Children with cerebral palsy (CP) frequently have reduced plantarflexion function, which is commonly attributed to impaired muscle structure and function, however little attention has been paid to the potential contribution of ATMA geometry. The use of musculoskeletal modelling for the simulation of gait and understanding of gait mechanics, rely on accuracy of ATMA estimates. This study aimed to compare 3D in-vivo estimates of ATMA of adults, children with CP and typically developing (TD) children, as well as compare 3D in-vivo estimates to linearly scaled musculoskeletal model estimates. MRI scans for eight children with CP, 11 TD children and nine healthy adults were used to estimate in-vivo 3D ATMA using a validated method. A lower limb musculoskeletal model was linearly scaled to individual tibia length to provide a scaled ATMA estimate. Normalised in-vivo 3D ATMA for children with CP was 17.2% ± 2.0 tibia length, which was significantly larger than for TD children (15.2% ± 1.2, p = 0.013) and adults (12.5% ± 0.8, p < 0.001). Scaled ATMA estimates from musculoskeletal models significantly underestimated in-vivo estimates for all groups, by up to 34.7%. The results of this study show children with CP have larger normalised 3D ATMA compared to their TD counterparts, which may have implications in understanding reduced plantarflexor function and the efficacy of surgical interventions whose aim is to modify the musculoskeletal geometry of this muscle group.  相似文献   

18.
Distinguishing gastrocnemius and soleus muscle function is relevant for treating gait disorders in which abnormal plantarflexor activity may contribute to pathological movement patterns. Our objective was to use experimental and computational analysis to determine the influence of gastrocnemius and soleus activity on lower limb movement, and determine if anatomical variability of the gastrocnemius affected its function. Our hypothesis was that these muscles exhibit distinct functions, with the gastrocnemius inducing limb flexion and the soleus inducing limb extension. To test this hypothesis, the gastrocnemius or soleus of 20 healthy participants was electrically stimulated for brief periods (90 ms) during mid- or terminal stance of a random gait cycle. Muscle function was characterized by the induced change in sagittal pelvis, hip, knee, and ankle angles occurring during the 200 ms after stimulation onset. Results were corroborated with computational forward dynamic gait models, by perturbing gastrocnemius or soleus activity during similar portions of the gait cycle. Mid- and terminal stance gastrocnemius stimulation induced posterior pelvic tilt, hip flexion and knee flexion. Mid-stance gastrocnemius stimulation also induced ankle dorsiflexion. In contrast mid-stance soleus stimulation induced anterior pelvic tilt, knee extension and plantarflexion, while late-stance soleus stimulation induced relatively little change in motion. Model predictions of induced hip, knee, and ankle motion were generally in the same direction as those of the experiments, though the gastrocnemius? results were shown to be quite sensitive to its knee-to-ankle moment arm ratio.  相似文献   

19.
External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury.  相似文献   

20.
Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates from shape modelling methods, and functional- and regression-based linear scaling approaches. The HJC of a generic musculoskeletal model was also perturbed to compute the root-mean squared error (RMSE) of the hip muscle moment arms between the reference HJC obtained from CT and the different scaling methods. Shape modelling without medical imaging data significantly reduced HJC location error estimates (11.4 ± 3.3 mm) compared to functional (36.9 ± 17.5 mm, p = <0.001) and regression (31.2 ± 15 mm, p = <0.001) methods. The addition of complete pelvis imaging data to the shape modelling workflow further reduced HJC error estimates compared to no imaging (6.6 ± 3.1 mm, p = 0.002). Average RMSE were greatest for the hip flexor and extensor muscle groups using the functional (16.71 mm and 8.87 mm respectively) and regression methods (16.15 mm and 9.97 mm respectively). The effects on moment-arms were less substantial for the shape modelling methods, ranging from 0.05 to 3.2 mm. Shape modelling methods improved HJC location and muscle moment-arm estimates compared to linear scaling of musculoskeletal models in patients with hip osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号