首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
目的:探讨层析法新工艺和原有的低温乙醇工艺制备纤维蛋白原在大鼠跟腱断裂模型中促恢复的效果差异。方法:构建大鼠跟腱部位断裂模型,将其分为空白组(未剪跟腱)、模型组(跟腱断裂未给药)、实验组(自制纤维蛋白原2 mg/mL)与对照组(市售纤维蛋白原2 mg/mL),观察各组大鼠在手术后三周跟腱部位的最大滑动距离、弹性模量和最大抗拉力差异。结果:采用冷沉淀溶解、酸沉除杂、S/D灭活病毒、MacroCap Q柱层析、过滤等流程可从人血浆冷沉淀组分Ⅰ中成功分离纯度为90.9%纤维蛋白原。试验中构建的大鼠跟腱部位断裂模型无感染、且均存活至试验终止。生物力学结果显示,四组大鼠跟腱在最大滑行距离上无明显统计学差异(P0.05);在跟腱部位弹性模量及最大抗压力比较上,实验组及对照组均优于模型组,但与空白组仍有一定差距,且差异均具有统计学意义(P0.05)。结论:采用柱层析法分离人纤维蛋白原,不仅能有效提高分离效率,减少蛋白损失,还可增强纤维蛋白原在断裂跟腱中的促恢复效果。  相似文献   

2.
    
The plantarflexor moment arm of the Achilles tendon determines the mechanical advantage of the triceps surae and also indirectly affects muscle force generation by setting the amount of muscle-tendon shortening per unit of ankle joint rotation. The Achilles tendon moment arm may be determined geometrically from an axis (or center) of joint rotation and the line of action of the tendon force, but such moment arms may be sensitive to the location of the joint axis. Using motion analysis to track an ultrasound probe overlying the Achilles tendon along with markers on the shank and foot, we measured Achilles tendon moment arm during loaded and unloaded dynamic plantarflexion motions in 15 healthy subjects. Three representations of the axis or center of rotation of the ankle were considered: (1) a functional axis, defined by motions of the foot and shank; (2) a transmalleolar axis; and (3) a transmalleolar midpoint. Moment arms about the functional axis were larger than those found using the transmalleolar axis and transmalleolar midpoint (all p < 0.001). Moment arms computed with the functional axis increased with plantarflexion angle (all p < 0.001), and increased with loading in the most plantarflexed position (p < 0.001) but these patterns were not observed when either using a transmalleolar axis or transmalleolar midpoint. Functional axis moment arms were similar to those estimated previously using magnetic resonance imaging, suggesting that using a functional axis for ultrasound-based geometric estimates of Achilles tendon moment arm is an improvement over landmark-based methods.  相似文献   

3.
    
Achilles tendon ruptures have been linked with detrimental changes in muscle-tendon structure, which may help explain long-term functional deficits. However, the causal effects of muscle-tendon structure on joint function have not been tested in a controlled setting. Therefore, the purpose of this study was to test the implications of muscle-tendon unit parameters on simulated single-leg heel raise height. We hypothesized that muscle fiber length and resting ankle angle – a clinical surrogate measure of tendon slack length – would predict single-leg heel raise height more strongly than other parameters. To test this hypothesis, we developed a two-part simulation paradigm that recreated clinically relevant muscle-tendon scenarios and then tested these parameters on single-leg heel raise height. We found that longer muscle fibers had the greatest positive effect on single-leg heel raise height. However, tendon slack length, determined by simulating resting ankle angles in a secondary analysis, revealed a stronger negative correlation with heel raise height. Our findings support previous clinical observations that both muscle fascicle length and resting tendon length are important muscle-tendon parameters for patient function. In addition to minimizing tendon elongation following rupture, treatment plans should focus on preserving plantarflexor muscle structure to mitigate functional loses following Achilles tendon ruptures.  相似文献   

4.
    
When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about both internal and external moment arms is essential since they determine the mechanical advantage of a muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from anthropometric measurements. Sixteen children with CP (age: 10y 7 m ± 3y, 7 hemiplegia, 12 diplegia, GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6 m ± 3y) participated in this case-control study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalized MAAT to be 15% (∼7 mm) smaller in children with CP compared to TD children (p = 0.003). MAAT could be predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in children with CP and TD children, respectively. Our findings have important implications for clinical decision making since MAAT influences the mechanical advantage about the ankle, which contributes to movement function and is manipulated surgically.  相似文献   

5.
    
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   

6.
7.
The present study aimed to clarify the effects of knee joint angle on the behavior of the medial gastrocnemius muscle (MG) fascicles during eccentric plantar flexions. Eight male subjects performed maximal eccentric plantar flexions at two knee positions [fully extended (K0) and 90° flexed (K90)]. The eccentric actions were preceded by static plantar flexion at a 30° plantar flexed position and then the ankle joint was forcibly dorsiflexed to 15° of dorsiflexion with an isokinetic dynamometer at 30°/s and 150°/s. Tendon force was calculated by dividing the plantar flexion torque by the estimated moment arm of the Achilles tendon. The MG fascicle length was determined with ultrasonography. The tendon forces during eccentric plantar flexions were influenced by the knee joint angle, but not by the angular velocity. The MG fascicle lengths were elongated as the ankle was dorsiflexed in K0, but in K90 they were almost constant despite the identical range of ankle joint motion. These results suggested that MG fascicle behavior during eccentric actions was markedly affected by the knee joint angle. The difference in the fascicle behavior between K0 and K90 could be attributed to the non-linear force–length relations and/or to the slackness of tendinous tissues.  相似文献   

8.
    
Currently, noninvasive cost-effective techniques capable of quantifying non-uniform degradation of tendon’s mechanical and structural properties associated with localized tendon injuries are not readily available. This study demonstrates the applicability of a simple surface-wave elastography (SURF-E) method for assessing the stiffness of the Achilles Tendon by measuring the propagation velocity of surface waves along the tendon in a much broader range of values than currently available Ultrasound-based or MRI-based elastography methods do. Results from this study confirm the non-uniform stiffening of the AT during passive ankle dorsiflexions.  相似文献   

9.
目的:探讨小切口微创手术治疗新鲜跟腱断裂的一晦床价值。方法:选取我院新鲜闭合性跟腱断裂患者50例,随机分为实验组和对照组各25例。实验组行小切口手术,对照组行常规切口手术。术后对患者进行随访,采用美国足踝协会(AOFAS)推荐的评分标准对患者术后功能恢复情况进行评价,观察并记录完全恢复患者例数、完全恢复时间、小腿最大周长差和术后并发症发生情况。结果:实验组AOFAS评分为(98.6±9.7)分,痊愈率96.00%,痊愈时间(20.2±3.2)周,两侧小腿最大周长差为(0.79+0.68)cm,共有1例患者出现并发症,并发症发生率8%;而对照组的AOFAS评分为(91.4±11.5)分,痊愈率92.00%,痊愈时间(22.4±3.8)周,两侧小腿最大周长差为(0.91~0.76)cm;共有6例患者出现并发症,并发症的发生率为24%。两组患者的痊愈率、两侧小腿最大周长差比较差异无统计学意义(痊愈率:x2=-0.355,P=0.552;侧小腿最大周长差:t=O.588,P=0.559);而与对照组比较,实验组AOFAS评分明显升高,完全恢复时间明显缩短,术后并发症的发生率显著降低,差异均有统计学意义(AOFAS评:t=2.393,P=0.021;恢复时间:t=2.150,P=0.037;并发症发生率:xⅫ.153,P=0.042)。结论:小切口手术与常规切口手术治疗新鲜跟腱断裂的疗效相当,但小切口手术术后恢童时间曼短.并发症更少.临床价值相对更高.  相似文献   

10.
The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates.  相似文献   

11.
    
This study aimed to investigate the acute effects of capacitive and resistive electric transfer (CRet) on Achilles tendon elongation during muscle contraction, as well as the circulation in the peritendinous region. Sixteen healthy men participated in this study. All 16 participants underwent 2 interventions: (1) CRet trial and (2) CRet without power (sham trial). Tendon elongation was measured four times. Using near-infrared spectroscopy, the blood circulation (volume of total-hemoglobin (Hb), oxygenated hemoglobin (oxy-Hb), and deoxygenated hemoglobin (deoxy-Hb)) was measured for 5 min before the intervention and for 30 min after the intervention. The differences between the measurements obtained before and after intervention were compared between the two interventions. The changes in tendon elongation and deoxy-Hb were not significantly different between the interventions. Total- and oxy-Hb were significantly increased in the CRet trial compared with the sham trial. In addition, the increases in total-Hb and oxy-Hb lasted for 30 min after the CRet intervention (CRet vs. sham: oxy-Hb: F = 8.063, p = 0.001, total-Hb: F = 4.564, p = 0.011). In conclusion, CRet significantly improved blood circulation in the peritendinous region.  相似文献   

12.
    
Tendon tissue engineering approaches are challenged by a limited understanding of the role mechanical loading plays in normal tendon development. We propose that the increased loading that developing postnatal tendons experience with the onset of locomotor behavior impacts tendon formation. The objective of this study was to assess the onset of spontaneous weight-bearing locomotion in postnatal day (P) 1, 5, and 10 rats, and characterize the relationship between locomotion and the mechanical development of weight-bearing and non-weight-bearing tendons. Movement was video recorded and scored to determine non-weight-bearing, partial weight-bearing, and full weight-bearing locomotor behavior at P1, P5, and P10. Achilles tendons, as weight-bearing tendons, and tail tendons, as non-weight-bearing tendons, were mechanically evaluated. We observed a significant increase in locomotor behavior in P10 rats, compared to P1 and P5. We also found corresponding significant differences in the maximum force, stiffness, displacement at maximum force, and cross-sectional area in Achilles tendons, as a function of postnatal age. However, the maximum stress, strain at maximum stress, and elastic modulus remained constant. Tail tendons of P10 rats had significantly higher maximum force, maximum stress, elastic modulus, and stiffness compared to P5. Our results suggest that the onset of locomotor behavior may be providing the mechanical cues regulating postnatal tendon growth, and their mechanical development may proceed differently in weight-bearing and non-weight-bearing tendons. Further analysis of how this loading affects developing tendons in vivo may inform future engineering approaches aiming to apply such mechanical cues to regulate engineered tendon formation in vitro.  相似文献   

13.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.  相似文献   

14.
    
Background: Achilles-tendon rupture prevails as a common tendon pathology. Adipose-derived mesenchymal stem cells (ADMSCs) are multipotent stem cells derived from adipose tissue with attractive regeneration properties; thus, their application in tendinopathies could be beneficial. Methods: Male rabbit ADMSCs were obtained from the falciform ligament according to previously established methods. After tenotomy and suture of the Achilles tendon, 1 × 106 flow-cytometry-characterized male ADMSCs were injected in four female New Zealand white rabbits in the experimental group (ADMSC group), whereas four rabbits were left untreated (lesion group). Confirmation of ADMSC presence in the injured site after 12 weeks was performed with quantitative sex-determining region Y (SRY)-gene RT-PCR. At Week 12, histochemical analysis was performed to evaluate tissue regeneration along with quantitative RT-PCR of collagen I and collagen III mRNA. Results: Presence of male ADMSCs was confirmed at Week 12. No statistically significant differences were found in the histochemical analysis; however, statistically significant differences between ADMSC and lesion group expression of collagen I and collagen III were evidenced, with 36.6% and 24.1% GAPDH-normalized mean expression, respectively, for collagen I (p < 0.05) and 26.3% and 11.9% GAPDH-normalized mean expression, respectively, for collagen III (p < 0.05). The expression ratio between the ADMSC and lesion group was 1.5 and 2.2 for collagen I and collagen III, respectively. Conclusion: Our results make an important contribution to the understanding and effect of ADMSCs in Achilles-tendon rupture.  相似文献   

15.
王晓军  刘劲松  张洪彬  沈勇伟 《生物磁学》2009,(20):3897-3899,3881
目的:研究短跑训练对运动员跟腱的影响。方法:选择从事运动训练4-6年的健康男、女短跑运动员为实验组(n=12),同时选同龄健康非运动员男、女为对照组(n=12),采用高频超声检测平静状态跟腱长度、横截面积,以及小腿三头肌等长收缩最大力量跖屈跟腱长度的变化。结果:跟腱长度:对照组男子168.5±9.2mm,女子162.4±9.8mm,实验组男子170.9±10.7mm,女子164.0±7.0mm。实验组和对照组组内、组间差别均无统计学意义。跟腱横截面积:对照组男子62.2±6.2mm2,女子47.1±4.5mm2,实验组男子65.6±2.9mm2,女子49.6±1.9mm2。同组内男子比女子跟腱横截面积大,差别有统计学意义(P&lt;0.05),但实验组和对照组组间差别无统计学意义。小腿三头肌等长收缩最大力跖屈时跟腱拉长值:对照组男子7.6±3.6mm,女子4.9±2.8mm,实验组男子11.1±2.9mm,女子7.9±3.1mm。男子比女子跟腱拉长值大、实验组比对照组拉长值大,差别均有统计学意义(P&lt;0.05)。结论:短跑训练可增加跟腱可拉伸长度,跟腱的长度和横截面积未发生明显变化。高频超声可作为重要的测量手段用于...  相似文献   

16.
We examined the influence exerted, through disuse of the hindlimb, on the collagen fibres of the achilles tendon in rats. With disuse the body mass decreased by 28%, and the mass of soleus muscle decreased by 20%. A decrease in the surface area and diameter was observed in the experimental group when compared to the control group. A histogram of the collagen fibres showed a decrease of the thick fibres in the experimental group. The maximum surface area of collagen fibres in the experimental group was seen to be only 43% of that of the control group. These results showed a decrease in the thickness of the collagen fibres of the achilles tendon through disuse. This seemed to suggest that resistance to tension is decreased by disuse.  相似文献   

17.
    
Following surgical Achilles tendon reconstruction surgery, there is a distinct trend towards an early and faster rehabilitation protocol to avoid muscle atrophy. However, this procedure involves the risk of a higher complication rate. In order to reduce the occurrence of re-ruptures and pathological tendon extensions, a tendon reconstruction with the highest possible primary stability is desirable. Therefore, the aim of this study was to determine if augmentation using synthetic polyester tapes (QuadsTape™) could provide greater primary stability in case of different tendon suture techniques.90 tendons of the superficial toe flexor of pigs were divided into 9 groups. The reconstruction method was combined using the factors suture technique (Kessler and Bunnell), augmentation (non-augmented and augmented with QuadsTape™) and defect type (end-to-end and 10 mm gap). The biomechanical measurements were performed on a material testing machine and consisted of a creep test, a cyclic test and a tear-off test. This study compared creep strain, ultimate load failure, maximum stress and stiffness.Irrespective of the type of defect involved, augmentation of the tendon sutures led to a significant increase of the maximum force (not augmented: 82.30 ± 25.48 N, augmented: 135.73 ± 30.69 N, p < 0.001) and the maximum stress (not augmented: 2.26 ± 0.83 MPa, augmented: 4.13 ± 1.79 MPa, p < 0.001). Furthermore, there was a non-significant increase in stiffness and no significant differences were observed with respect to creep strain.Augmentation of Achilles tendon reconstruction using QuadsTape™ increases composite strength and stiffness in the in vitro model, thus potentially contributing to the feasibility of early rehabilitation programs. Biological factors still need to be investigated in order to formulate appropriate indications.  相似文献   

18.
    
A linear encoder measuring vertical displacement during the heel-rise endurance test (HRET) enables the assessment of work and maximum height in addition to the traditional repetitions measure. We aimed to compare the test-retest reliability and agreement of these three outcome measures. Thirty-eight healthy participants (20 females, 18 males) performed the HRET on two occasions separated by a minimum of seven days. Reliability was assessed by the intraclass correlation coefficient (ICC) and agreement by a range of measures including the standard error of measurement (SEM), coefficient of variation (CV), and 95% limits of agreement (LoA). Reliability for repetitions (ICC = 0.77 (0.66, 0.85)) was equivalent to work (ICC = 0.84 (95% CI 0.76, 0.89)) and maximum height (ICC = 0.85 (0.77, 0.90)). Agreement for repetitions (SEM = 6.7 (5.8, 7.9); CV = 13.9% (11.9, 16.8%); LoA = −1.9 ± 37.2%) was equivalent to work (SEM = 419 J (361, 499 J); CV = 13.1% (11.2, 15.8%); LoA = 0.1 ± 34.8%) with maximum height superior (SEM = 0.8 cm (0.6, 1.0 cm); CV = 6.6% (5.7, 7.9%); LoA = 1.3 ± 17.1%). Work and maximum height demonstrated acceptable reliability and agreement that was at least equivalent to the traditional repetitions measure.  相似文献   

19.
    
Rodent models are commonly used to investigate tendon healing, with the biomechanical and structural properties of the healed tendons being important outcome measures. Tendon storage for later testing becomes necessary when performing large experiments with multiple time-points. However, it is unclear whether freezing rodent tendons affects their material properties. Thus the aim of this study was to determine whether freezing rat Achilles tendons affects their biomechanical or structural properties. Tendons were frozen at either −20 °C or −80 °C directly after harvesting, or tested when freshly harvested. Groups of tendons were subjected to several freeze-thaw cycles (1, 2, and 5) within 3 months, or frozen for 9 months, after which the tendons were subjected to biomechanical testing. Additionally, fresh and thawed tendons were compared morphologically, histologically and by transmission electron microscopy. No major differences in biomechanical properties were found between fresh tendons and those frozen once or twice at −20 °C or −80 °C. However, deterioration of tendon properties was found for 5-cycle groups and both long-term freezing groups; after 9 months of freezing at −80 °C the tear resistance of the tendon was reduced from 125.4 ± 16.4N to 74.3 ± 18.4N (p = 0.0132). Moreover, tendons stored under these conditions showed major disruption of collagen fibrils when examined by transmission electron microscopy. When examined histologically, fresh samples exhibited the best cellularity and proteoglycan content of the enthesis. These properties were preserved better after freezing at −80 °C than after freezing at −20 °C, which resulted in markedly smaller chondrocytes and less proteoglycan content. Overall, the best preservation of histological integrity was seen with tendons frozen once at −80 °C. In conclusion, rat Achilles tendons can be frozen once or twice for short periods of time (up to 3 months) at −20 °C or −80 °C for later testing. However, freezing for 9 months at either −20 °C or −80 °C leads to deterioration of certain parameters.  相似文献   

20.
In this study, the frontal plane moment arms of tibialis anterior (TA) and the lateral and medial heads of gastrocnemius (LG and MG) were determined using ultrasonography of ten healthy subjects. Analysis of variance was performed to investigate the effects of frontal plane angle, muscle activity, and plantarflexion angle on inversion–eversion moment arm for each muscle. The moment arms of each muscle were found to vary with frontal plane angle (all p<0.001). TA and LG exhibited eversion moment arms when the foot was everted, but MG was found to have a slight inversion moment arm in this position. As the ankle rotated from 0° to 20° inversion, the inversion moment arm of each increased, indicating that the three muscles became increasingly effective inverters. In neutral position, the inverter moment arm of MG was greater than that of LG (p=0.001). Muscle activity had a significant effect on both LG and MG moment arm at all frontal plane positions (all p0.005). These results demonstrate the manner in which frontal plane moment arms of gastrocnemius and TA differ across the frontal plane range of motion in healthy subjects. This method for assessing muscle action in vivo used in this study may prove useful for subject-specific planning of surgical treatments for frontal plane foot and ankle deformities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号