共查询到13条相似文献,搜索用时 6 毫秒
1.
2.
Following surgical Achilles tendon reconstruction surgery, there is a distinct trend towards an early and faster rehabilitation protocol to avoid muscle atrophy. However, this procedure involves the risk of a higher complication rate. In order to reduce the occurrence of re-ruptures and pathological tendon extensions, a tendon reconstruction with the highest possible primary stability is desirable. Therefore, the aim of this study was to determine if augmentation using synthetic polyester tapes (QuadsTape™) could provide greater primary stability in case of different tendon suture techniques.90 tendons of the superficial toe flexor of pigs were divided into 9 groups. The reconstruction method was combined using the factors suture technique (Kessler and Bunnell), augmentation (non-augmented and augmented with QuadsTape™) and defect type (end-to-end and 10 mm gap). The biomechanical measurements were performed on a material testing machine and consisted of a creep test, a cyclic test and a tear-off test. This study compared creep strain, ultimate load failure, maximum stress and stiffness.Irrespective of the type of defect involved, augmentation of the tendon sutures led to a significant increase of the maximum force (not augmented: 82.30 ± 25.48 N, augmented: 135.73 ± 30.69 N, p < 0.001) and the maximum stress (not augmented: 2.26 ± 0.83 MPa, augmented: 4.13 ± 1.79 MPa, p < 0.001). Furthermore, there was a non-significant increase in stiffness and no significant differences were observed with respect to creep strain.Augmentation of Achilles tendon reconstruction using QuadsTape™ increases composite strength and stiffness in the in vitro model, thus potentially contributing to the feasibility of early rehabilitation programs. Biological factors still need to be investigated in order to formulate appropriate indications. 相似文献
3.
The plantarflexor moment arm of the Achilles tendon determines the mechanical advantage of the triceps surae and also indirectly affects muscle force generation by setting the amount of muscle-tendon shortening per unit of ankle joint rotation. The Achilles tendon moment arm may be determined geometrically from an axis (or center) of joint rotation and the line of action of the tendon force, but such moment arms may be sensitive to the location of the joint axis. Using motion analysis to track an ultrasound probe overlying the Achilles tendon along with markers on the shank and foot, we measured Achilles tendon moment arm during loaded and unloaded dynamic plantarflexion motions in 15 healthy subjects. Three representations of the axis or center of rotation of the ankle were considered: (1) a functional axis, defined by motions of the foot and shank; (2) a transmalleolar axis; and (3) a transmalleolar midpoint. Moment arms about the functional axis were larger than those found using the transmalleolar axis and transmalleolar midpoint (all p < 0.001). Moment arms computed with the functional axis increased with plantarflexion angle (all p < 0.001), and increased with loading in the most plantarflexed position (p < 0.001) but these patterns were not observed when either using a transmalleolar axis or transmalleolar midpoint. Functional axis moment arms were similar to those estimated previously using magnetic resonance imaging, suggesting that using a functional axis for ultrasound-based geometric estimates of Achilles tendon moment arm is an improvement over landmark-based methods. 相似文献
4.
When studying muscle and whole-body function in children with cerebral palsy (CP), knowledge about both internal and external moment arms is essential since they determine the mechanical advantage of a muscle over an external force. Here we asked if Achilles tendon moment arm (MAAT) length is different in children with CP and age-matched typically developing (TD) children, and if MAAT can be predicted from anthropometric measurements. Sixteen children with CP (age: 10y 7 m ± 3y, 7 hemiplegia, 12 diplegia, GMFCS level: I (11) and II (8)) and twenty TD children (age: 10y 6 m ± 3y) participated in this case-control study. MAAT was calculated at 20° plantarflexion by differentiating calcaneus displacement with respect to ankle angle. Seven anthropometric variables were measured and related to MAAT. We found normalized MAAT to be 15% (∼7 mm) smaller in children with CP compared to TD children (p = 0.003). MAAT could be predicted by all anthropometric measurements with tibia length explaining 79% and 72% of variance in children with CP and TD children, respectively. Our findings have important implications for clinical decision making since MAAT influences the mechanical advantage about the ankle, which contributes to movement function and is manipulated surgically. 相似文献
5.
目的:研究短跑训练对运动员跟腱的影响。方法:选择从事运动训练4-6年的健康男、女短跑运动员为实验组(n=12),同时选同龄健康非运动员男、女为对照组(n=12),采用高频超声检测平静状态跟腱长度、横截面积,以及小腿三头肌等长收缩最大力量跖屈跟腱长度的变化。结果:跟腱长度:对照组男子168.5±9.2mm,女子162.4±9.8mm,实验组男子170.9±10.7mm,女子164.0±7.0mm。实验组和对照组组内、组间差别均无统计学意义。跟腱横截面积:对照组男子62.2±6.2mm2,女子47.1±4.5mm2,实验组男子65.6±2.9mm2,女子49.6±1.9mm2。同组内男子比女子跟腱横截面积大,差别有统计学意义(P&lt;0.05),但实验组和对照组组间差别无统计学意义。小腿三头肌等长收缩最大力跖屈时跟腱拉长值:对照组男子7.6±3.6mm,女子4.9±2.8mm,实验组男子11.1±2.9mm,女子7.9±3.1mm。男子比女子跟腱拉长值大、实验组比对照组拉长值大,差别均有统计学意义(P&lt;0.05)。结论:短跑训练可增加跟腱可拉伸长度,跟腱的长度和横截面积未发生明显变化。高频超声可作为重要的测量手段用于... 相似文献
6.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals. 相似文献
7.
Benjamin R. Freedman Joseph J. Sarver Mark R. Buckley Pramod B. Voleti Louis J. Soslowsky 《Journal of biomechanics》2014
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R2=0.88–0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties. 相似文献
8.
Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon. 相似文献
9.
10.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. 相似文献
11.
Limited information is available concerning the existence of a cholinergic system in the human Achilles tendon. We have studied pain-free normal Achilles tendons and chronically painful Achilles tendinosis tendons with regard to immunohistochemical expression patterns of the M(2) muscarinic acetylcholine receptor (M(2)R), choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). M(2)R immunoreactivity was detected in the walls of blood vessels. As evidenced via parallel staining for CD31 and alpha-smooth muscle actin, most M(2)R immunoreactivity was present in the endothelium. M(2)R immunoreactivity also occured in tenocytes, which regularly immunoreact for vimentin. The degree of M(2)R immunoreactivity was highly variable, tendinosis tendons that exhibit hypercellularity and hypervascularity showing the highest levels of immunostaining. Immunoreaction for ChAT and VAChT was detected in tenocytes in tendinosis specimens, particularly in aberrant cells. In situ hybridization revealed that mRNA for ChAT is present in tenocytes in tendinosis specimens. Our results suggest that autocrine/paracrine effects occur concerning the tenocytes in tendinosis. Up-regulation/down-regulation in the levels of M(2)R immunoreactivity possibly take place in tenocytes and blood vessel cells during the various stages of tendinosis. The presumed local production of acetylcholine (ACh), as evidenced by immunoreactivity for ChAT and VAChT and the detection of ChAT mRNA, appears to evolve in response to tendinosis. These observations are of importance because of the well-known vasoactive, trophic, and pain-modulating effects that ACh is known to have and do unexpectedly establish the presence of a non-neuronal cholinergic system in the Achilles tendon. 相似文献
12.
Xuting Bian Tianyao Liu Mingyu Yang Chengyi Gu Gang He Mei Zhou Hong Tang Kang Lu Fan Lai Feng Wang Qiandong Yang Jan‐ke Gustafsson Xiaotang Fan Kanglai Tang 《Journal of cellular and molecular medicine》2020,24(17):9925-9935
Achilles tendon healing (ATH) remains an unanswered question in the field of sports medicine because it does not produce tissue with homology to the previously uninjured tissue. Oestrogen receptor β (ERβ) is involved in the injury and repair processes of tendons. Our previous study confirmed that ERβ plays a role in the early stage of ATH by affecting adipogenesis, but its role in extracellular matrix (ECM) remodelling is unknown. We established a 4‐week Achilles tendon repair model to investigate the mechanism through which ERβ affects ATH at the very beginning of ECM remodelling phase. In vitro studies were performed using tendon‐derived stem cells (TDSCs) due to their promising role in tendon healing. Behavioural and biomechanical tests revealed that ERβ‐deficient mice exhibit weaker mobility and inferior biomechanical properties, and immunofluorescence staining and qRT‐PCR showed that these mice exhibited an erroneous ECM composition, as mainly characterized by decreased collagen type I (Col I) deposition. The changes in gene expression profiles between ERβ‐knockout and WT mice at 1 week were analysed by RNA sequencing to identify factors affecting Col I deposition. The results highlighted the IRF5‐CCL3 axis, and this finding was verified with CCL3‐treated TDSCs. These findings revealed that ERβ regulates Col I deposition during ATH via the IRF5‐CCL3 axis. 相似文献
13.
The purpose of this study was to investigate Achilles tendon (AT) length changes during a series of tasks that involved combinations of higher/lower force, and larger/smaller length changes of the medial gastrocnemius muscle-tendon unit (MTU). We sought to determine if common ultrasound-based estimates of AT length change were consistent with expectations for a passive elastic tendon acting in series with a muscle. We tested 8 healthy individuals during restricted joint calf contractions (high force, low displacement), ankle dorsi-/plantar-flexion (DF/PF) with the foot in the air (low force, high displacement), and heel raises (high force, high displacement). We experimentally estimated AT length change using two ultrasound methods, one based on muscle-tendon junction (MTJ) tracking and one based on muscle fascicle (MF) tracking. Estimates of AT length change were consistent with model expectations during restricted calf contractions, when the MTU underwent minimal length change. However, estimates of AT length changes were inconsistent with model expectations during the ankle DF/PF and heel raise tasks. Specifically, the AT was estimated to shorten substantially, often 10–20 mm, when the ankle plantarflexed beyond neutral position, despite loading conditions in which a passive, stiff spring would be expected to either lengthen (under increasing force) or maintain its length (under low force). These unexpected findings suggest the need for improvements in how we conceptually model and/or experimentally estimate MTU dynamics in vivo during motion analysis studies, particularly when the ankle plantarflexes beyond neutral. 相似文献