首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The effects of the rib cage on thoracic spine loading are not well studied, but the rib cage may provide stability or share loads with the spine. Intervertebral disc pressure provides insight into spinal loading, but such measurements are lacking in the thoracic spine. Thus, our objective was to examine thoracic intradiscal pressures under applied pure moments, and to determine the effect of the rib cage on these pressures. Human cadaveric thoracic spine specimens were positioned upright in a testing machine, and Dynamic pure moments (0 to ±5 N·m) with a compressive follower load of 400 N were applied in axial rotation, flexion - extension, and lateral bending. Disc pressures were measured at T4-T5 and T8-T9 using needle-mounted pressure transducers, first with the rib cage intact, and again after the rib cage was removed. Changes in pressure vs. moment slopes with rib cage removal were examined. Pressure generally increased with applied moments, and pressure-moment slope increased with rib cage removal at T4-T5 for axial rotation, extension, and lateral bending, and at T8-T9 for axial rotation. The results suggest the intact rib cage carried about 62% and 56% of axial rotation moments about T4-T5 and T8-T9, respectively, as well as 42% of extension moment and 36–43% of lateral bending moment about T4-T5 only. The rib cage likely plays a larger role in supporting moments than compressive loads, and may also play a larger role in the upper thorax than the lower thorax.  相似文献   

2.
    
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load – FL, axial load – AL, and combined load – CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion–extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a “physiologic” in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.  相似文献   

3.
    
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

4.
    
Fractures of the odontoid present frequently in spinal trauma, and Type II odontoid fractures, occurring at the junction of the odontoid process and C2 vertebrae, represent the bulk of all traumatic odontoid fractures. It is currently unclear what soft-tissue stabilizers contribute to upper cervical motion in the setting of a Type II odontoid fracture, and evaluation of how concomitant injury contributes to cervical stability may inform surgical decision-making as well as allow for the creation of future, accurate, biomechanical models of the upper cervical spine. The objective of the current study was to determine the contribution of soft-tissue stabilizers in the upper cervical spine following a Type II odontoid fracture. Eight cadaveric C0-C2 specimens were evaluated using a robotic testing system with motion tracking. The unilateral facet capsule (UFC) and anterior longitudinal ligament (ALL) were serially resected to determine their biomechanical role following odontoid fracture. Range of motion (ROM) and moment at the end of intact specimen replay were the primary outcomes. We determined that fracture of the odontoid significantly increases motion and decreases resistance to intact motion for flexion–extension (FE), axial rotation (AR), and lateral bending (LB). Injury to the UFC increased AR by 3.2° and FE by 3.2°. ALL resection did not significantly increase ROM or decrease end-point moment. The UFC was determined to contribute to 19% of intact flexion resistance and 24% of intact AR resistance. Overall, we determined that Type II fracture of the odontoid is a significant biomechanical destabilizer and that concurrent injury to the UFC further increases upper cervical ROM and decreases resistance to motion in a cadaveric model of traumatic Type II odontoid fractures.  相似文献   

5.
    
Knowledge on the spinal kinematics and muscle activation of the cervical and thoracic spine during functional task would add to our understanding of the performance and interplay of these spinal regions during dynamic condition. The purpose of this study was to examine the influence of chronic neck pain on the three-dimensional kinematics and muscle recruitment pattern of the cervical and thoracic spine during an overhead reaching task involving a light weight transfer by the upper limb. Synchronized measurements of the three-dimensional spinal kinematics and electromyographic activities of cervical and thoracic spine were acquired in thirty individuals with chronic neck pain and thirty age- and gender-matched asymptomatic controls. Neck pain group showed a significantly decreased cervical velocity and acceleration while performing the task. They also displayed with a predominantly prolonged coactivation of cervical and thoracic muscles throughout the task cycle. The current findings highlighted the importance to examine differential kinematic variables of the spine which are associated with changes in the muscle recruitment in people with chronic neck pain. The results also provide an insight to the appropriate clinical intervention to promote the recovery of the functional disability commonly reported in patients with neck pain disorders.  相似文献   

6.
    
In-vitro biomechanical testing is widely performed for characterizing the load-displacement characteristics of intact, injured, degenerated, and surgically repaired osteoligamentous spine specimens. Traditional specimen fixture devices offer an unspecified rigidity of fixation, while varying in the associated amounts and reversibility of damage to and “coverage” of a specimen – factors that can limit surgical access to structures of interest during testing as well as preclude the possibility of testing certain segments of a specimen. Therefore, the objective of this study was to develop a specimen fixture system for spine biomechanical testing that uses components of clinically available spinal fixation hardware and determine whether the new system provides sufficient rigidity for spine biomechanical testing. Custom testing blocks were mounted into a robotic testing system and the angular deflection of the upper fixture was measured indirectly using linear variable differential transformers. The fixture system had an overall stiffness 37.0, 16.7 and 13.3 times greater than a typical human functional spine unit for the flexion/extension, axial rotation and lateral bending directions respectively – sufficient rigidity for biomechanical testing. Fixture motion when mounted to a lumbar spine specimen revealed average motion of 0.6, 0.6, and 1.5° in each direction. This specimen fixture method causes only minimal damage to a specimen, permits testing of all levels of a specimen, and provides for surgical access during testing.  相似文献   

7.
The aim of this study was to investigate the cervicocephalic kinaesthesia of healthy subjects for gender and age effects and its reliability in a new virtual reality test procedure. 57 healthy subjects (30 male, 27 females; 18-64 years) were immersed into a virtual 3D scene via a headmounted display, which generated specific head movements. The joint repositioning error was determined in a static and dynamic test at the times T0, T1 (T0 + 10 minutes) and T2 (T0 + 24 hours). The intrasession reliability (T0-T1) and the intersession reliability (T0-T2) were analysed. In both tests no gender- or age-specific effects were found. In the overall group the means of the static test were 6.2°-6.9° and of the dynamic test were 4.5°-4.9°. The intratest difference in the static test was -0.16° and the intertest difference was 0.47°. The intratest difference in the dynamic test was 0.42° and the intertest difference was 0.37°. The static and dynamic test was reproducible in healthy subjects, with minor deviations, irrespective of gender and age. The smaller interindividual differences in the dynamic test could be beneficial in the comparison of healthy individuals and individuals with cervical spine disorders.  相似文献   

8.
    
In vivo lumbar passive stiffness is often used to assess time-dependent changes in lumbar tissues and to define the neutral zone. We tested the hypothesis that flexing the hips would alter tension in hip and spine musculature, leading to a more extended passive stiffness curve (i.e., right-shifted), without changes in lumbar stiffness. Twenty participants underwent side-lying passive testing with the lower limbs positioned in Stand, Kneel, and Sit representative postures. Moment-angle curves were constructed from the lumbar angles and the moment at L4/5 and partitioned into three zones. Partially supporting our hypothesis, lumbar stiffness within the low and transition stiffness zones was similar between the Stand and Sit. Contrary to our hypothesis, lumbar angles were significantly larger in the Sit compared to the Stand and Kneel postures at the first and second breakpoints, with average differences of 9.3° or 27.2% of passive range of motion (%PassRoM) in flexion and 5.6° or 16.6 %PassRoM in extension. Increased flexion in the Sit may be linked to increased posterior pelvic tilt and associated lower lumbar vertebrae flexion. Investigators must ensure consistent pelvis and hip positioning when measuring lumbar stiffness. Additionally, the adaptability of the neutral zone to pelvis posture, particularly between standing and sitting, should be considered in ergonomic applications.  相似文献   

9.
    
A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle forces, was computed in each task. Results indicated that under in vivo loading conditions, the passive FE model predicted intradiscal pressures (IDPs) that closely matched those measured under the simulated tasks (R2 = 0.98 and root-mean-squared-error, RMSE = 0.18 MPa). The calculated equivalent FL compared well with the resultant force of all muscle forces and gravity loads acting on the L4-L5 segment (R2 = 0.99 and RMSE = 58 N). Therefore, as an alternative approach to represent in vivo loading conditions in passive FE model studies, this FL can be estimated by available in-house or commercial MS models. In clinical applications and design of implants, commonly considered in vitro loading conditions on the passive FE models do not adequately represent the in vivo loading conditions under muscle exertions. Therefore, more realistic in vivo loading conditions should instead be used.  相似文献   

10.
    
Diagnosing dysfunctional atlantoaxial motion is challenging given limitations of current diagnostic imaging techniques. Three-dimensional imaging during upright functional motion may be useful in identifying dynamic instability not apparent on static imaging. Abnormal atlantoaxial motion has been linked to numerous pathologies including whiplash, cervicogenic headaches, C2 fractures, and rheumatoid arthritis. However, normal C1/C2 rotational kinematics under dynamic physiologic loading have not been previously reported owing to imaging difficulties. The objective of this study was to determine dynamic three-dimensional in vivo C1/C2 kinematics during upright axial rotation. Twenty young healthy adults performed full head rotation while seated within a biplane X-ray system while radiographs were collected at 30 images per second. Six degree-of-freedom kinematics were determined for C1 and C2 via a validated volumetric model-based tracking process. The maximum global head rotation (to one side) was 73.6 ± 8.3°, whereas maximum C1 rotation relative to C2 was 36.8 ± 6.7°. The relationship between C1/C2 rotation and head rotation was linear through midrange motion (±20° head rotation from neutral) in a nearly 1:1 ratio. Coupled rotation between C1 and C2 included 4.5 ± 3.1° of flexion and 6.4 ± 8.2° of extension, and 9.8 ± 3.8° of contralateral bending. Translational motion of C1 relative to C2 was 7.8 ± 1.5 mm ipsilaterally, 2.2 ± 1.2 mm inferiorly, and 3.3 ± 1.0 mm posteriorly. We believe this is the first study describing 3D dynamic atlantoaxial kinematics under true physiologic conditions in healthy subjects. C1/C2 rotation accounts for approximately half of total head axial rotation. Additionally, C1 undergoes coupled flexion/extension and contralateral bending, in addition to inferior, lateral and posterior translation.  相似文献   

11.
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation, jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles.  相似文献   

12.
    
Epidemiological data and clinical indicia reveal devastating consequences associated with pediatric neck injuries. Unfortunately, neither injury prevention nor clinical management strategies will be able to effectively reduce these injuries or their effects on children, without an understanding of the cervical spine developmental biomechanics. Thus, we investigated the relationship between spinal development and the functional (stiffness) and failure biomechanical characteristics of the cervical spine in a baboon model. A correlation study design was used to define the relationships between spinal tissue maturation and spinal biomechanics in both tension and compression. Eighteen baboon cervical spine specimens distributed across the developmental spectrum (1–26 human equivalent years) were dissected into osteoligamentous functional spinal units. Using a servo-hydraulic MTS, these specimens (Oc–C2, C3–C4, C5–C6, C7–T1) were non-destructively tested in tension and compression and then displaced to failure in tension while measuring the six-axes of loads and displacements. The functions describing the developmental biomechanical response of the cervical spine for stiffness and normalized stiffness exhibited a significant direct relationship in both tension and compression loading. Similarly, the tensile failure load and normalized failure load demonstrated significant maturational increases. Further, differences in biomechanical response were observed between the spinal levels examined and all levels exhibited clinically relevant failure patterns. These data support our understanding of the child cervical spine from a developmental biomechanics perspective and facilitate the development of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects.  相似文献   

13.
    
The subaxial cervical facets are important load-bearing structures, yet little is known about their mechanical response during physiological or traumatic intervertebral motion. Facet loading likely increases when intervertebral motions are superimposed with axial compression forces, increasing the risk of facet fracture. The aim of this study was to measure the mechanical response of the facets when intervertebral axial compression or distraction is superimposed on constrained, non-destructive shear, bending and rotation motions. Twelve C6/C7 motion segments (70 ± 13 yr, nine male) were subjected to constrained quasi-static anterior shear (1 mm), axial rotation (4°), flexion (10°), and lateral bending (5°) motions. Each motion was superimposed with three axial conditions: (1) 50 N compression; (2) 300 N compression (simulating neck muscle contraction); and, (3) 2.5 mm distraction. Angular deflections, and principal and shear surface strains, of the bilateral C6 inferior facets were calculated from motion-capture data and rosette strain gauges, respectively. Linear mixed-effects models (α = 0.05) assessed the effect of axial condition. Minimum principal and maximum shear strains were largest in the compressed condition for all motions except for maximum principal strains during axial rotation. For right axial rotation, maximum principal strains were larger for the contralateral facets, and minimum principal strains were larger for the left facets, regardless of axial condition. Sagittal deflections were largest in the compressed conditions during anterior shear and lateral bending motions, when adjusted for facet side.  相似文献   

14.
目的:为临床上开展健侧C7神经移位经椎体前通路治疗臂丛损伤提供解剖学基础。方法:选取10具20侧正常成人尸体颈段标本,将双侧臂丛充分显露,远端向C7神经根前后股进行干支分离,在前后股加入外侧束及后束前将其切断,近端向椎间孔处游离,测量C7神经根从椎间孔至分股处的长度及C7神经至前后股长度,测量并记录C7神经根及前后股经椎体前通路、颈前皮下通路到对侧臂丛上、下干的距离。结果:C7神经根的长度(58.62±8.70)mm,C7神经前、后股的长度(70.03±10.79)mm,(65.15±9.11)mm,C7神经根经颈前皮下、椎体前通路至对侧上下干的缺损长度分别是(98.18±10.18)mm,(107.14±9.88)mm;(32.10±11.49)mm,(37.28±10.01)mm两组相比有统计学差异。结论:从解剖学角度而言,健侧C7神经移位经椎体前通路能明显缩短移植神经长度,在临床上具有可操作性。  相似文献   

15.
In this study the effect of muscle fatigue on the cervical spine flexion–relaxation response was studied. Twenty healthy participants (10 males and 10 females) were recruited for data collection. The Sorenson protocol was utilized to induce neck muscle fatigue. Surface electromyography and optical motion capture systems were used to measure neck muscle activation and head–neck posture, respectively. A post-fatigue reduction in the Flexion–Relaxation Ratio (FRR) and higher FRR for females compared to males were observed. A post-fatigue decrease was also observed in the onset and offset angles resulting in an expansion of the myoelectric silence period. Gender had no effect on the onset and offset angles of the silence period. Post-fatigue shift in the onset and offset angles and the expansion of the silence period indicate an increased contribution by the passive viscoelastic tissues in stabilizing the cervical spine under fatigued condition.  相似文献   

16.
    
Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.  相似文献   

17.
M.K. Karapetian 《HOMO》2017,68(3):176-198
Studies on discrete traits of the human cervical vertebrae, appearing at certain intervals during the last century, posed some questions regarding evolutionary processes that human cervical spine underwent during phylogenesis. To address questions of significance of these morphological traits we need first a good knowledge of the extent of their variation in modern humans. The aim of the current work was to integrate available data on the occurrence of various non-metric traits in the human cervical spine and search for the pattern of their distribution on intra- and inter-population levels. The study was based on data from five osteological samples from North America (Terry and Grant collections) and Russia (mid 20th c. and 18th c.); and data taken from literature. Traits were categorized into rare (<3%), low frequency (up to 10%), often encountered (10–30%) and characteristic for modern humans (>50% on average). Several traits showed mild to strong association with each other indicating interrelation between various spine characteristics. Of the traits analyzed, the following had consistent pattern of sex-related variability: complete dorsal ponticle, bifid spinous processes and cervical ribs; and ancestry-related variability: dorsal ponticle and bifid spinous processes. Each ancestry group (European, African, Asian and North American) had its specifics regarding the latter two traits which might be related to genetic isolation. Most of the traits, however, showed relatively similar pattern of distribution among various populations, including the pattern of within-spine variability. This suggests a common intraspecific pattern and a possible link to some fundamental characteristics of the human vertebral column.  相似文献   

18.
Experimental studies have found significant variation in cervical intervertebral kinematics (IVK) among healthy subjects, but the effect of this variation on biomechanical properties, such as neck strength, has not been explored. The goal of this study was to quantify variation in model predictions of extension strength, flexion strength and gravitational demand (the ratio of gravitational load from the weight of the head to neck muscle extension strength), due to inter-subject variation in IVK. IVK were measured from sagittal radiographs of 24 subjects (14F, 10M) in five postures: maximal extension, mid-extension, neutral, mid-flexion, and maximal flexion. IVK were defined by the position (anterior-posterior and superior-inferior) of each cervical vertebra with respect to T1 and its angle with respect to horizontal, and fit with a cubic polynomial over the range of motion. The IVK of each subject were scaled and incorporated into musculoskeletal models to create models that were identical in muscle force- and moment-generating properties but had subject-specific kinematics. The effect of inter-subject variation in IVK was quantified using the coefficient of variation (COV), the ratio of the standard deviation to the mean. COV of extension strength ranged from 8% to 15% over the range of motion, but COV of flexion strength was 20–80%. Moreover, the COV of gravitational demand was 80–90%, because the gravitational demand is affected by head position as well as neck strength. These results indicate that including inter-individual variation in models is important for evaluating neck musculoskeletal biomechanical properties.  相似文献   

19.
目的 探讨HPV感染(尤其是高危型HPV)及其病毒负荷量在宫颈癌及上皮内瘤变的诊断中的价值,以期对临床工作有所借鉴。方法 采取回顾性研究宫颈癌、上皮内瘤变及正常妇女387例,对比分析宫颈癌、上皮内瘤变I、II、III级及正常妇女的HPV感染率及负荷情况。结果 (1)CINI、II、III级和宫颈癌HPV感染率明显高于正常组(70.45%,55.56%,66.33%,84.62% vs 13.19%,P<0.05),以高危型HPV为主(各占47.73%,41.67%,59.18%,83.08%),并且单一感染多见(63.64%,47.22%,53.06%,67.69%);(2)CIN I级HPV-DNA负荷量较低,CIN II、III级和宫颈癌组负荷量逐渐增加,尤其是病毒负荷量达500~1000及以上的比例逐步增高(P<0.05);(3)Pearson相关分析可见HPV负荷量与宫颈病变严重程度密切相关(P<0.01)。结论 宫颈癌和CIN多伴有高危型HPV感染,其病变严重程度与HPV负荷量密切相关,HPV结合负荷量检测能更精确判断宫颈病变。  相似文献   

20.
    
The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900–1100 N and 9.9–11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号