首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine functional differences in total hip replacement patients (THR) when stratified either by age or by functional ability as defined by self-selected walking speed. THR patients and a control group underwent three-dimensional motion analysis under self-selected normal and fast walking conditions. Patients were stratified into five age groups for comparison with existing literature. The THR cohort was also stratified into three functional groups determined by their self-selected gait speed (low function <1SD of total cohort’s mean walking speed; high function >1SD; normal function within 1SD). Hip kinematics, ground reaction forces, joint moments and joint powers in all three planes (x-y-z) were analysed. 137 THR and 27 healthy control patients participated. When stratified by age, during normal walking the youngest two age groups walked quicker than the oldest two groups (p < 0.0001) but between-group differences were not consistent across age strata. The differences were diminished under the fast walking condition. When stratified by function, under normal walking conditions, the low function and normal function THR groups had a reduced extension angle (mean = 1.75°, SD = ±7.75, 1.26° ± 7.42, respectively) compared to the control group (−6.07° ± 6.43; p < 0.0001). The low function group had a reduced sagittal plane hip power (0.75 W/kg ± 0.24), reduced flexor (0.60 Nm/kg ± 0.85) and extensor moment (0.51 Nm/kg ± 0.17) compared to controls (p < 0.0001). These differences persisted under the fast walking condition. There were systematic differences between patients when stratified by function, in both walking conditions. Age-related differences were less systematic. Stratifying by biomechanical factors such as gait speed, rather than age, might be more robust for investigating functional differences.  相似文献   

2.
Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects×4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects’ self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects’ fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data—which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed—emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.  相似文献   

3.
Implementing user-driven treadmill control in gait training programs for rehabilitation may be an effective means of enhancing motor learning and improving functional performance. This study aimed to determine the effect of a user-driven treadmill control scheme on walking speeds, anterior ground reaction forces (AGRF), and trailing limb angles (TLA) of healthy adults. Twenty-three participants completed a 10-m overground walking task to measure their overground self-selected (SS) walking speeds. Then, they walked at their SS and fastest comfortable walking speeds on an instrumented split-belt treadmill in its fixed speed and user-driven control modes. The user-driven treadmill controller combined inertial-force, gait parameter, and position based control to adjust the treadmill belt speed in real time. Walking speeds, peak AGRF, and TLA were compared among test conditions using paired t-tests (α = 0.05). Participants chose significantly faster SS and fast walking speeds in the user-driven mode than the fixed speed mode (p > 0.05). There was no significant difference between the overground SS walking speed and the SS speed from the user-driven trials (p < 0.05). Changes in AGRF and TLA were caused primarily by changes in walking speed, not the treadmill controller. Our findings show the user-driven treadmill controller allowed participants to select walking speeds faster than their chosen speeds on the fixed speed treadmill and similar to their overground speeds. Since user-driven treadmill walking increases cognitive activity and natural mobility, these results suggest user-driven treadmill control would be a beneficial addition to current gait training programs for rehabilitation.  相似文献   

4.
Larger trunk and pelvic motions in persons with (vs. without) lower limb amputation during activities of daily living (ADLs) adversely affect the mechanical demands on the lower back. Building on evidence that such altered motions result in larger spinal loads during level-ground walking, here we characterize trunk-pelvic motions, trunk muscle forces, and resultant spinal loads among sixteen males with unilateral, transfemoral amputation (TFA) walking at a self-selected speed both up (“upslope”; 1.06 ± 0.14 m/s) and down (“downslope”; 0.98 ± 0.20 m/s) a 10-degree ramp. Tri-planar trunk and pelvic motions were obtained (and ranges-of-motion [ROM] computed) as inputs for a non-linear finite element model of the spine to estimate global and local muscle (i.e., trunk movers and stabilizers, respectively) forces, and resultant spinal loads. Sagittal- (p = 0.001), frontal- (p = 0.004), and transverse-plane (p < 0.001) trunk ROM, and peak mediolateral shear (p = 0.011) and local muscle forces (p = 0.010) were larger (respectively 45, 35, 98, 70, and 11%) in upslope vs. downslope walking. Peak anteroposterior shear (p = 0.33), compression (p = 0.28), and global muscle (p = 0.35) forces were similar between inclinations. Compared to previous reports of persons with TFA walking on level ground, 5–60% larger anteroposterior and mediolateral shear observed here (despite ∼0.25 m/s slower walking speeds) suggest greater mechanical demands on the low back in sloped walking, particularly upslope. Continued characterization of trunk motions and spinal loads during ADLs support the notion that repeated exposures to these larger-than-normal (i.e., vs. level-ground walking in TFA and uninjured cohorts) spinal loads contribute to an increased risk for low back injury following lower limb amputation.  相似文献   

5.
Investigating inter-joint coordination at different walking speeds in young and elderly adults could provide insights to age-related changes in neuromuscular control of gait. We examined effects of walking speed and age on the pattern and variability of inter-joint coordination. Gait analyses of 10 young and 10 elderly adults were performed with different self-selected speeds, including a preferred, faster, and slower speed. Continuous relative phase (CRP), derived from phase planes of two adjacent joints, was used to assess the inter-joint coordination. CRP patterns were examined with cross-correlation measures and root-mean-square (RMS) differences when comparing ensemble mean curves of the faster or slower speed to preferred speed walking. Variability of coordination for each participant was assessed with the average value of all standard deviations calculated for each data point over a gait cycle from all CRP curves, namely the deviation phase (DP). For hip-knee CRP pattern, RMS differences were significantly greater between the slower and preferred walking speeds than between the faster and preferred walking speeds in young adults, but this was not found in elderly adults. Significant group differences in RMS differences and cross-correlation measures were detected in hip-knee CRP patterns between the slower and preferred walking speeds. No significant walking speed or age effects were detected for the knee-ankle CRP. Significant walking speed effects were also detected in hip-knee DP values. However, no significant group differences were detected for all three speeds. These findings suggested that young and elder adults compromise changes of walking speed with different neuromuscular control strategies.  相似文献   

6.
Gender differences in the incidence of symptomatic hip osteoarthritis (OA), changes in hip cartilage volume and hip joint space and rates hip arthroplasty of older people are reported in the literature. As the rate of progression of OA is in part mechanically modulated it is possible that this gender bias may be related to inherent differences (if they exist) in walking mechanics between older males and females. The purpose of this study was to examine potential mechanisms for gender differences in hip joint mechanics during walking by testing the hypotheses that females would exhibit higher hip flexion, adduction and internal rotation moments but not significantly greater normalized ground reaction forces (GRFs). Forty-two healthy subjects (21 male, 21 female), ages 50–79 yr were recruited for gait analysis. In support of the hypotheses, greater external hip adduction and internal rotation along with hip extension moments were found for females compared to males after normalizing for body size for all self-selected walking speeds. Differences in walking style (kinematics) were the main determinants in the joint kinetic differences as no differences in the normalized GRFs were found. As external joint moments are surrogate measures of the joint contact forces, the results of this study suggest the hip joint stress for the female population is higher compared to male population. This is in favor of a hypothesis that the increased joint contact stress in a female population could contribute to a greater joint degeneration at the hip in females as compared with males.  相似文献   

7.
Individuals with peripheral neuropathy (PN) may compensate for decreased somatosensation by reducing walking speed. Predisposition to falls may therefore arise from an inability to adapt to challenging walking speeds. The purpose of this study was to examine the effects of PN on the magnitude of variability and local instability on walking at different speeds. Twelve individuals with PN and 12 controls completed a 6-min walk test to determine fast walking speed (FWS). Sagittal plane hip, knee, and ankle joint angles were then calculated during 3min of treadmill walking at 100%, 80%, and 60% FWS. The magnitudes of stride duration variability (SDvar), joint angle variability (JTvar), and both short- and long-term Lyapunov exponents (used to estimate local instability) were calculated. The PN group walked slower than the control group (p<.001). With groups combined, walking faster led to increased local instability and increased variability (p<.001). The PN group exhibited increased variability (SDvar, p=.02; JTvar, p=.01) over all speeds, and exaggerated local instability (p<.05) when walking at the fastest speed. PN leads to increased walking variability and local instability, particularly when walking at challenging speeds. These results are important to consider in future patient education and rehabilitation programs.  相似文献   

8.
Gait analysis in orthopaedic and neurological examinations is important; however, few studies assess gait variability at different walking speeds in patients with varying degrees of hip osteoarthritis. We aimed to clarify (1) how different controlled speeds and (2) various severities of hip osteoarthritis influence gait variability. Gait variability was described by the standard deviation (SD) of the spatial–temporal and mean standard deviation (MeanSD) of angular parameters. The spatial positions of the anatomical points for calculating gait parameters were determined in 20 healthy elderly controls and 20 patients with moderate and 20 patients with severe hip osteoarthritis with a zebris CMS-HS ultrasound-based motion analysis system at three walking speeds. The SD of the spatial–temporal and MeanSD of angular parameters of gait, which together describe gait variability, significantly depended on speed and osteoarthritis severity. The lowest variability in the gait was found near the self-selected walking speeds. Hip joint degeneration significantly worsened variability on the affected side, with non-affected joints and the pelvis compensating by increasing flexibility and adapting to step-by-step motions. Particular attention must be paid to improving gait stability and the reliability of limb movements in the presence of and increasing severity of osteoarthritis.  相似文献   

9.
Gait performance secondary to a stroke is partially dependent on residual muscle strength. However, to pinpoint more precisely the mechanism of this relationship, biomechanical models, such as the muscular utilization ratio (MUR) that integrates both muscle strength and gait parameters into the concept of level of effort, are warranted. The aim of the present study was to evaluate the MUR of plantarflexors, hip flexors and extensor muscles during their concentric action in 17 chronic hemiparetic participants walking at self-selected and maximal speeds. Results revealed that peak MUR increased with gait speed. At self-selected speed (0.73+/-0.27 m/s), peak MUR values on the paretic side were 64% (+/-18.7), 46% (+/-27.6) and 33% (+/-25.6) for the plantarflexors, hip flexors and extensor muscles, respectively. At maximal speed (1.26+/-0.39 m/s), corresponding values were 77% (+/-23.6), 72% (+/-33.0) and 58% (+/-32.1). Peak MUR showed negative associations (-0.33-0.68), although not all significant, with voluntary muscle strength. The results of this study indicated that the peak MUR increased with gait speed. The plantarflexors were the most used muscle group at self-selected speed, whereas at maximal speed the three muscle groups showed similar peak MUR values. This last finding suggested an important role of the hip muscles in reaching a faster speed. Lastly, because moderate associations were found between peak MUR values and the voluntary muscle strength of hip flexors and extensors, it can be concluded that the weakest paretic muscle groups show, in general, the highest level of effort during gait.  相似文献   

10.
Our primary objective was to examine external hip joint moments during walking in people with mild radiographic hip osteoarthritis (OA) with and without symptoms and disease-free controls. Three groups were compared (symptomatic with mild radiographic hip OA, n = 12; asymptomatic with mild radiographic hip OA, n = 13; OA-free controls, n = 20). Measures of the external moment (peak and impulse) in the sagittal, frontal and transverse plane during walking were determined. Variables were compared according to group allocation using mixed linear regression models that included individual gait trials, with group allocation as fixed effect and walking speed as a random effect. Participants with evidence of radiographic disease irrespective of symptoms walked 14–16% slower compared to disease-free controls (p = 0.002). Radiographic disease without symptoms was not associated with any altered measures of hip joint moment compared to asymptomatic OA-free controls once speed was taken into account (p ≥ 0.099). People with both mild radiographic disease and symptoms had lower external peak hip adduction moment (p = 0.005) and lower external peak internal rotation moment (p < 0.001) accounting for walking speed. Among angular impulses, only the presence of symptoms was associated with a reduced hip internal rotation impulse (p = 0.002) in the symptomatic group. Collectively, our observations suggest that symptoms have additional mechanical associations from radiographic disease alone, and provide insight into potential early markers of hip OA. Future research is required to understand the implications of modifying walking speed and/or the external hip adduction and internal rotation moment in people with mild hip OA.  相似文献   

11.
While it is widely speculated that obesity causes increased loads on the knee leading to joint degeneration, this concept is untested. The purpose of the study was to identify the effects of obesity on lower extremity joint kinetics and energetics during walking. Twenty-one obese adults were tested at self-selected (1.29m/s) and standard speeds (1.50m/s) and 18 lean adults were tested at the standard speed. Motion analysis and force platform data were combined to calculate joint torques and powers during the stance phase of walking. Obese participants were more erect with 12% less knee flexion and 11% more ankle plantarflexion in self-selected compared to standard speeds (both p<0.02). Obese participants were still more erect than lean adults with approximately 6 degrees more extension at all joints (p<0.05, for each joint) at the standard speed. Knee and ankle torques were 17% and 11% higher (p<0.034 and p<0.041) and negative knee work and positive ankle work were 68% and 11% higher (p<0.000 and p<0.048) in obese participants at the standard speed compared to the slower speed. Joint torques and powers were statistically identical at the hip and knee but were 88% and 61% higher (both p<0.000) at the ankle in obese compared to lean participants at the standard speed. Obese participants used altered gait biomechanics and despite their greater weight, they had less knee torque and power at their self-selected walking speed and equal knee torque and power while walking at the same speed as lean individuals. We propose that the ability to reorganize neuromuscular function during gait may enable some obese individuals to maintain skeletal health of the knee joint and this ability may also be a more accurate risk indicator for knee osteoarthritis than body weight.  相似文献   

12.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

13.
The use of body weight support (BWS) systems during locomotor retraining has become routine in clinical settings. BWS alters load receptor feedback, however, and may alter the biomechanical role of the ankle plantarflexors, influencing gait. The purpose of this study was to characterize the biomechanical adaptations that occur as a result of a change in limb load (controlled indirectly through BWS) and gait speed during treadmill locomotion. Fifteen unimpaired participants underwent gait analysis with surface electromyography while walking on an instrumented dual-belt treadmill at seven different speeds (ranging from 0.4 to 1.6 m/s) and three BWS conditions (ranging from 0% to 40% BWS). While walking, spatiotemporal measures, anterior/posterior ground reaction forces, and ankle kinetics and muscle activity were measured and compared between conditions. At slower gait speeds, propulsive forces and ankle kinetics were unaffected by changing BWS; however, at gait speeds ≥approximately 0.8 m/s, an increase in BWS yielded reduced propulsive forces and diminished ankle plantarflexor moments and powers. Muscle activity remained unaltered by changing BWS across all gait speeds. The use of BWS could provide the advantage of faster walking speeds with the same push-off forces as required of a slower speed. While the use of BWS at slower speeds does not appear to detrimentally affect gait, it may be important to reduce BWS as participants progress with training, to encourage maximal push-off forces. The reduction in plantarflexor kinetics at higher speeds suggests that the use of BWS in higher functioning individuals may impair the ability to relearn walking.  相似文献   

14.
In this study, we examined Spatial–temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 ± 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 ± 6 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride’s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals’ adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations.  相似文献   

15.
Patients with diabetic peripheral neuropathy are significantly more likely to fall while walking than subjects with intact sensation. While it has been suggested that these patients walk slower to improve locomotor stability, slower speeds are also associated with increased locomotor variability, and increased variability has traditionally been equated with loss of stability. If the latter were true, this would suggest that slowing down, as a locomotor control strategy, should be completely antithetical to the goal of maintaining stability. The present study resolves these seemingly paradoxical findings by using methods from nonlinear time series analysis to directly quantify the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Fourteen patients with severe peripheral neuropathy and 12 gender-, age-, height-, and weight-matched non-diabetic controls participated. Sagittal plane angles of the right hip, knee, and ankle joints and tri-axial accelerations of the trunk were measured during 10 min of continuous overground walking at self-selected speeds. Maximum finite-time Lyapunov exponents were computed for each time series to quantify the local dynamic stability of these movements. Neuropathic patients exhibited slower walking speeds and better local dynamic stability of upper body movements in the horizontal plane than did control subjects. The differences in local dynamic stability were significantly predicted by differences in walking speed, but not by differences in sensory status. These results support the hypothesis that reductions in walking speed are a compensatory strategy used by neuropathic patients to maintain dynamic stability of the upper body during level walking.  相似文献   

16.
The non-disabled human ankle joint was examined during walking in an attempt to determine overall system characteristics for use in the design of ankle prostheses. The hypothesis of the study was that the quasi-stiffness of the ankle changes when walking at different walking speeds. The hypothesis was examined using sagittal plane ankle moment versus ankle angle curves from 24 able-bodied subjects walking over a range of speeds. The slopes of the moment versus ankle angle curves (quasi-stiffness) during loading appeared to change as speed was increased and the relationship between the moment and angle during loading became increasingly non-linear. The loading and unloading portions of the moment versus angle curves showed clockwise loops (hysteresis) at self-selected slow speeds that reduced essentially to zero as the speed increased to self-selected normal speeds. Above self-selected normal speeds, the loops started to traverse a counter-clockwise path that increased in area as the speed was increased. These characteristics imply that the human ankle joint could be effectively replaced with a rotational spring and damper for slow to normal walking speeds. However, to mimic the characteristics of the human ankle during walking at fast speeds, an augmented system would be necessary. This notion is supported by the sign of the ankle power at the time of opposite heel contact, which was negative for slow speeds, was near zero at normal speeds, and was positive for fast walking speeds.  相似文献   

17.
In the prediction of bone remodelling processes after total hip replacement (THR), modelling of the subject-specific geometry is now state-of-the-art. In this study, we demonstrate that inclusion of subject-specific loading conditions drastically influences the calculated stress distribution, and hence influences the correlation between calculated stress distributions and changes in bone mineral density (BMD) after THR.For two patients who received cementless THR, personalized finite element (FE) models of the proximal femur were generated representing the pre- and post-operative geometry. FE analyses were performed by imposing subject-specific three-dimensional hip joint contact forces as well as muscle forces calculated based on gait analysis data. Average values of the von Mises stress were calculated for relevant zones of the proximal femur. Subsequently, the load cases were interchanged and the effect on the stress distribution was evaluated. Finally, the subject-specific stress distribution was correlated to the changes in BMD at 3 and 6 months after THR.We found subject-specific differences in the stress distribution induced by specific loading conditions, as interchanging of the loading also interchanged the patterns of the stress distribution. The correlation between the calculated stress distribution and the changes in BMD were affected by the two-dimensional nature of the BMD measurement.Our results confirm the hypothesis that inclusion of subject-specific hip contact forces and muscle forces drastically influences the stress distribution in the proximal femur. In addition to patient-specific geometry, inclusion of patient-specific loading is, therefore, essential to obtain accurate input for the analysis of stress distribution after THR.  相似文献   

18.
Transverse plane shear stress between the prosthetic socket and residual limb often results in soft tissue breakdown and discomfort for individuals with lower-limb amputation. To better understand the effects of reduced transverse plane stiffness in the shank of a prosthesis, a second-generation variable stiffness torsion adapter (VSTA II) was tested with individuals with a transtibial amputation (n = 10). Peak transverse plane moments, VSTA II deflection, range of whole body angular momentum (WBAM), ground reaction impulse, joint work, and personal stiffness preference were evaluated at three fixed stiffness levels (compliant: 0.25 Nm/°, intermediate: 0.75 Nm/°, stiff: 1.25 Nm/°) at three walking speeds (self-selected, fast and slow: +/− 20% of self-selected, respectively) while straight-line walking and performing left and right turns. Residual limb loading decreased and VSTA II displacement increased for reductions in stiffness and both metrics increased with increasing walking speed, while ground reaction impulse and joint work were unaffected. The range of WBAM increased with decreased stiffness, which suggests an increased risk of falling when using the VSTA II at lower stiffness settings. Preference testing showed no significant result, but trends for lower stiffness settings when turning and walking at self-selected speeds were noted, as were stiffer settings when walking straight and at faster speeds. These results show that a device with rotational compliance like the VSTA II could reduce loading on the residual limb during straight walking and turning activities and that factors such as walking speed, activity type and user preference can affect the conditions for optimal use.  相似文献   

19.
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support.  相似文献   

20.
Following stroke many individuals are left with neurological and functional deficits, including hemiparesis, which impair their ability to walk. Our previous work reported that propulsion of the paretic leg during pre-swing is impaired and may limit gait speed and knee flexion during swing. To elucidate the mechanism of this impairment, we assessed the mechanical work produced by the hip, knee, and ankle moments during pre-swing of the paretic limb in a group of stroke subjects and compared it with the work produced by non-disabled controls walking at similar speeds. Kinematic and kinetic gait data were collected from 23 hemiparetic and 10 control subjects. The hemiparetic subjects walked at their self-selected speeds. The controls walked at their self-selected and two or three slower speeds. Even when compared to controls walking at slow speeds, ankle plantarflexor work during pre-swing was greatly reduced (-0.136+/-0.062J/kg) in the hemiparetic subjects. Differences in hip (+0.006+/-0.020J/kg) and knee (+0.040+/-0.026J/kg) moment work partially offset the reduction in ankle work, but net joint moment work was still significantly reduced (-0.088+/-0.056J/kg). The reduction in work accounts for the low energy of the paretic limb at the stance-to-swing transition previously reported. Future investigation is needed to determine if targeted training of the plantarflexors in the paretic limb improves swing-phase function and locomotor performance in hemiparetic individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号