首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

2.
This study investigated the post-activation performance enhancements (PAPE) induced by a high-intensity single set of accentuated eccentric isoinertial resistance exercise on vertical jump performance. Twenty physically active male university students performed, in randomized counterbalanced order, two different conditioning activities (CA) after a general preestablished warm-up: a conditioning set of 6 maximum repetitions at high intensity (i.e., individualized optimal moment of inertia [0.083 ± 0.03 kg·m-2]) of the flywheel half-squat exercise in the experimental condition, or a set of 6 maximal countermovement jumps (CMJ) instead of the flywheel exercise in the control condition. CMJ height, CMJ concentric peak power and CMJ concentric peak velocity were assessed at baseline (i.e., 3 minutes after the warm-up) and 4, 8, 12, 16 and 20 minutes after the CA in both experimental and control protocols. Only after the experimental protocol were significant gains in vertical jump performance (p < 0.05, ES range 0.10–1.34) at 4, 8, 12, 16 and 20 minutes after the CA observed. In fact, the experimental protocol showed greater (p < 0.05) CMJ height, concentric peak power and concentric peak velocity enhancements compared to the control condition. In conclusion, a single set of high-intensity flywheel training led to PAPE in CMJ performance after 4, 8, 12, 16 and 20 minutes in physically active young men.  相似文献   

3.
The aim of this study was to conduct a comprehensive examination of caffeine’s effects on countermovement jump (CMJ) performance. In this randomized, double-blind, crossover study, twenty-two resistance-trained men (age: 28 ± 5 years; height: 183 ± 5 cm; weight: 79 ± 10 kg; habitual caffeine intake: 127 ± 102 mg/day) performed the CMJ test on two occasions, following the ingestion of capsule containing 3 mg/kg of caffeine or placebo (3 mg/kg of dextrose). Fifteen outcomes derived from the force plate during the CMJ test were analyzed. As compared to placebo, there was a significant ergogenic effect of caffeine for peak force, force at eccentric to concentric action transition, time to peak force, peak power, maximum rate of power development, peak velocity, power at peak force, velocity at peak power, velocity at peak force, and vertical jump height. Effect sizes ranged from 0.11 to 0.38, p-values ranged from 0.048 to 0.002. There were no significant differences between caffeine and placebo for mean force, mean power, time to peak power, impulse at 300 ms, and force at peak power. This study shows that caffeine ingestion impacts a wide array of outcomes derived from the force plate during the CMJ test, not only jump height. From a practical perspective, the findings suggest that: (1) individuals interested in acute increases in CMJ performance may consider caffeine supplementation; and, (2) caffeine intake should be standardized before CMJ testing.  相似文献   

4.
This study was aimed to analyze the loss of muscle explosive force in the early phase of eccentric exercise-induced damage, and its possible relationships with muscle soreness and blood creatine kinase (CK) levels. Squat jump (SJ) and countermovement jump (CMJ) heights decreased in response to an eccentric exercise (120 eccentric actions of the knee extensors), with reductions that persisted at least for 24 h. The SJ/CMJ ratio was not significantly modified. Blood CK levels changed significantly over time and CK activity was significantly higher at 6 and at 24 h when compared to values obtained immediately after the eccentric exercise. Muscle soreness perceived at 6 h was slightly higher than that experienced just after finalizing the exercise and reached a clearly upper value at 24 h. A highly significant relationship between SJ and CMJ height loss was observed. CK activity at 24 h was significantly related to the SJ height loss at 6 h and to both the SJ height loss and the CMJ height loss immediately after the exercise. In summary, eccentric exercise induced a reduction in the explosive force generating capacity that affected in a similar way the pure concentric jump (SJ) and the jump eliciting the stretch-shortening cycle (CMJ). Results obtained suggest that CK activity is a better predictor of explosive force reduction than soreness, at least when values close to the peak are used.  相似文献   

5.
Sáez Sáez de villarreal, E, Izquierdo, M, and Gonzalez-Badillo, JJ. Enhancing jump performance after combined vs. maximal power, heavy-resistance, and plyometric training alone. J Strength Cond Res 25(12): 3274-3281, 2011-The purpose of this study was to examine the effects of 5 different stimuli on jumping ability and power production after 7 weeks of training. Sixty-five (47 men and 18 women) physical education students were randomly assigned to 5 experimental groups that performed: combination of all training methods (A); heavy-resistance training using full-squat exercise (i.e., 56-85% of 1 RM for 3-6 repetitions) (B); power-oriented strength training using a parallel-squat exercise (i.e., 100-130% of load that maximizes power output for 2-6 repetitions) (C); power-oriented strength training using a loaded countermovement jumping (i.e., 70-100% of load that maximizes power output for 2-5 repetitions; countermovement jump [CMJ]) (D); and plyometric jumping (E). The CMJ (cm), loaded CMJ (cm), maximum rate of force development (RFDmax) during early concentric phase of loaded CMJ (N·s) and power output during early concentric phase of loaded CMJ (watts) were measured before and after 7 weeks of training. Significant improvements in CMJ (from 7.8 to 13.2%) were observed in all groups. Significantly greater increases in power output during loaded jumps were observed in A (10-13%) and D (8-12%) groups compared with in the other groups. Significant increases in RFDmax were observed in A (20-30%), C (18-26%), and D (20-26%) groups. The results of this study provide evidence to suggest that if training program is designed and implemented correctly, both traditional slow velocity training and faster power-oriented strength training alone, or in combination with plyometric training, would provide a positive training stimulus to enhance jumping performance.  相似文献   

6.
The objective of this study was to compare bilateral and unilateral hurdle jumps with traditional countermovement jumps (CMJs). Thirteen athletes were tested during continuous forward bilateral and unilateral hurdle jumps and single CMJ. Countermovement jump height was used to establish the hurdle height. Subjects jumped forward over 4 hurdles with the force plate positioned after the second hurdle to measure vertical ground reaction force (VGRF), contact time (CT), and rate of force development (RFD). For bilateral jumps, hurdle height was established at maximal (100%) CMJ height and at 120, 140, and 160% of the CMJ height. The athletes were instructed to jump as fast as possible to mimic a training session drill. For unilateral jumps, hurdle height was set at 70, 80, and 90% of the CMJ height. Bilateral 160% jumps showed a significantly longer CT than bilateral 100, 120, and 140% jumps. The bilateral 100, 120, and 140% jumps had significantly shorter CT than the unilateral jumps and CMJ. The VGRF during bilateral jumps was higher than unilateral jumps and CMJ. Bilateral 160% jump RFD was significantly higher than CMJ and unilateral jumps but significantly lower than the other bilateral jumps. In conclusion, the characteristics of the bilateral jumps were substantially different from those of the CMJ and unilateral hurdle jumps. As bilateral hurdle jumps with a height between 100 and 140% of the CMJ provide similar CTs and VGRF as many reported sprint or jump actions, they may be considered a more training-specific power training drill than the CMJ.  相似文献   

7.
The purpose of this study was to evaluate the reliability of a new anaerobic athletic performance system. This system is proposed to assess vertical jump height, anaerobic power through repetitive jumping, and reaction to both an auditory and visual stimulus. One hundred twenty-three subjects (92 men and 31 women; mean +/- SD: age, 20.5 +/- 2.1 years; body weight, 83.1 +/- 20.4 kg; height, 176.0 +/- 9.2 cm) volunteered to participate. To assess reliability of the new testing device, subjects were tested on 3 separate occasions (T1, T2, and T3). At least 72 hours but not more than 1 week separated each laboratory visit. During each testing session subjects performed a countermovement jump (CMJ), a 30 consecutive jumps anaerobic power test (30JT), and reaction to both an auditory and visual stimulus. Results showed no differences between T1, T2, and T3 in either CMJ height or 30JT assessments. However, reaction to an audible or visual stimulus significantly improved during each testing session. Intraclass reliability of the CMJ and the 30JT was greater than 0.96 across the 3 trials. Pearson correlation coefficients of r > 0.90 were seen for the CMJ and 30JT, indicating a high test-retest reliability. The test-retest reliability for the reaction tests were lower (r ranging from 0.72 to 0.83). A Bland-Altman plot showed limited agreement between methods of vertical jump height assessment. Results indicate that this new testing device shows high reliability to assess both CMJ height and anaerobic power. In addition, anaerobic power assessment in a jump test provides a specific measure of anaerobic power for many sports incorporating similar performance patterns.  相似文献   

8.
The purpose of this research was to compare the effects of a warm-up with static vs. dynamic stretching on countermovement jump (CMJ) height, reaction time, and low-back and hamstring flexibility and to determine whether any observed performance deficits would persist throughout a series of CMJs. Twenty-one recreationally active men (24.4 ± 4.5 years) completed 3 data collection sessions. Each session included a 5-minute treadmill jog followed by 1 of the stretch treatments: no stretching (NS), static stretching (SS), or dynamic stretching (DS). After the jog and stretch treatment, the participant performed a sit-and-reach test. Next, the participant completed a series of 10 maximal-effort CMJs, during which he was asked to jump as quickly as possible after seeing a visual stimulus (light). The CMJ height and reaction time were determined from measured ground reaction forces. A treatment × jump repeated-measures analysis of variance for CMJ height revealed a significant main effect of treatment (p = 0.004). The CMJ height was greater for DS (43.0 cm) than for NS (41.4 cm) and SS (41.9 cm) and was not less for SS than for NS. Analysis also revealed a significant main effect of jump (p = 0.005) on CMJ height: Jump height decreased from the early to the late jumps. The analysis of reaction time showed no significant effect of treatment. Treatment had a main effect (p < 0.001) on flexibility, however. Flexibility was greater after both SS and DS compared to after NS, with no difference in flexibility between SS and DS. Athletes in sports requiring lower-extremity power should use DS techniques in warm-up to enhance flexibility while improving performance.  相似文献   

9.
The primary aim of this study was to determine reliability and factorial validity of squat (SJ) and countermovement jump (CMJ) tests. The secondary aim was to compare 3 popular methods for the estimation of vertical jumping height. Physical education students (n = 93) performed 7 explosive power tests: 5 different vertical jumps (Sargent jump, Abalakow's jump with arm swing and without arm swing, SJ, and CMJ) and 2 horizontal jumps (standing long jump and standing triple jump). The greatest reliability among all jumping tests (Cronbach's alpha = 0.97 and 0.98) had SJ and CMJ. The reliability alpha coefficients for other jumps were also high and varied between 0.93 and 0.96. Within-subject variation (CV) in jumping tests ranged between 2.4 and 4.6%, the values being lowest in both horizontal jumps and CMJ. Factor analysis resulted in the extraction of only 1 significant principal component, which explained 66.43% of the variance of all 7 jumping tests. Since all jumping tests had high correlation coefficients with the principal component (r = 0.76-0.87), it was interpreted as the explosive power factor. The CMJ test showed the highest relationship with the explosive power factor (r = 0.87), that is, the greatest factorial validity. Other jumping tests had lower but relatively homogeneous correlation with the explosive power factor extracted. Based on the results of this study, it can be concluded that CMJ and SJ, measured by means of contact mat and digital timer, are the most reliable and valid field tests for the estimation of explosive power of the lower limbs in physically active men.  相似文献   

10.
In studies of physical performance comprising muscle strength and power, a vertical jump is a test method that frequently is used. It is important to have access to accurate measuring tools providing data with high reproducibility. Studies have shown that body composition also may play an important part in physical performance. The purpose of this study was to determine test-retest reliability for 3 different kinds of vertical jumps and to correlate jump height with body composition. Thirty-four normally trained subjects (women n = 17) between 18 and 25 years participated. Test-retest, on 3 kinds of vertical jumps, was performed with a median of 7 days between jumps. Methods used were a countermovement jump (CMJ) on a contact mat, with and without arm swing, and an Abalakow jump (AJ) using measuring tape, with arm swing. Body composition was assessed with the use of bioelectric impedance analysis. The results showed that high intraclass correlation coefficients (ICCs) were observed between testing occasions for all 3 vertical jumps (ICC between 0.48 and 0.88). The AJ in women presented the lowest ICC. Also the correlation between CMJ and AJ was high (rs = 0.88). Moderate-to-high correlations could be shown between body composition and CMJ in women (rs = -0.57-0.76). In conclusion, very high test-retest reliability for CMJ on a contact mat was found. For the AJ using a measuring tape, ICC were overall high, but a moderate nonsignificant ICC were found in women, indicating poor reproducibility. The data from the CMJ and AJ may be compared if approximately 25% of the AJ value is subtracted. In practice, this means that vertical jump tests have high reproducibility and can be used as measures of power development.  相似文献   

11.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

12.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

13.
The purpose of this study was to investigate changing biomechanical properties with increasing drop jump height. Sixteen physically active college students participated in this study and performed drop jumps from heights of 20, 30, 40, 50, and 60 cm (DJ20-DJ60). Kinematic and kinetic data were collected using 11 Eagle cameras and 2 force platforms. Data pertaining to the dominant leg for each of 3 trials for each drop height were recorded and analyzed. Statistical comparisons of vertical ground reaction force (vGRF), impulse, moment, power, work, and stiffness were made between different drop jump heights. The peak vGRF of the dominant leg exceeded 3 times the body weight during DJ50 and DJ60; these values were significantly greater than those for DJ20, DJ30, and DJ40 (all p < 0.004). The height jumped during DJ60 was significantly less than that during DJ20 and DJ30 (both p = 0.010). Both the landing impulse and total impulse during the contact phase were significantly different between each drop height (all p < 0.036) and significantly increased with drop height. There were no significant differences in the takeoff impulse. Peak and mean power absorption and negative work at the knee and ankle joints during DJ40, DJ50, and DJ60 were significantly greater than those during DJ20 and DJ30 (all p < 0.049). Leg, knee, and ankle stiffness during DJ60 were significantly less than during DJ20, DJ30, and DJ40 (all p < 0.037). The results demonstrated that drop jumps from heights >40 cm offered no advantages in terms of mechanical efficiency (SSC power output) and stiffness. Drop jumps from heights in excess of 60 cm are not recommended because of the lack of biomechanical efficiency and the potentially increased risk of injury.  相似文献   

14.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

15.
Da Silva-Grigoletto, ME, de Hoyo, M, Sa?udo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p < 0.01), whereas the 90 second intervention, participants just experienced a decrease in SJ and CMJ (p < 0.05). When comparing the different protocols, the greatest response was achieved using 60 seconds (p < 0.05), which was therefore considered as the optimal duration to be used in phase 2. In the second phase, improvements in jump ability and power output were found with 3 and 6 sets (p < 0.05), whereas with 9 sets, participants actually experienced a decrease in these variables. Intergroup comparison showed a greater effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.  相似文献   

16.
The aim of this study was to investigate the influence of a 4-week electromyostimulation (EMS) training program on the vertical jump performance of 12 volleyball players. EMS sessions were incorporated into volleyball sessions 3 times weekly. EMS consisted of 20-22 concomitant stimulations of the knee extensor and plantar flexor muscles and lasted approximately 12 minutes. No significant changes were observed after EMS training for squat jump (SJ) and counter movement jump (CMJ) performance, while the mean height and the mean power maintained during 15 seconds of consecutive CMJs significantly increased by approximately 4% (p < 0.05). Ten days after the end of EMS training, the jumping height significantly (p < 0.05) increased compared with baseline also for single jumps (SJ +6.5%, CMJ +5.4%). When the aim of EMS resistance training is to enhance vertical jump ability, sport-specific workouts following EMS would enable the central nervous system to optimize the control to neuromuscular properties.  相似文献   

17.
Storage and utilization of elastic strain energy during jumping   总被引:1,自引:0,他引:1  
  相似文献   

18.
The purpose of this study was to explore the effects of 5 weeks of eccentrically loaded and unloaded jump squat training in experienced resistance-trained athletes during the strength/ power phase of a 15-week periodized off-season resistance training program. Forty-seven male college football players were randomly assigned to 1 of 3 groups. One group performed the jump squat exercise using both concentric and eccentric phases of contraction (CE; n = 15). A second group performed the jump squat exercise using the concentric phase only (n = 16), and a third group did not perform the jump squat exercise and served as control (CT; n = 16). No significant differences between the groups were seen in power, vertical jump height, 40-yd sprint speed and agility performance. In addition, no differences between the groups were seen in integrated electromyography activity during the jump squat exercise. Significant differences between the CE and CT groups were seen in Delta 1RM squat (65.8 and 27.5 kg, respectively) and Delta 1RM power clean (25.9 and 3.8 kg, respectively). No other between-group differences were observed. Results of this study provide evidence of the benefits of the jump squat exercise during a short-duration (5-week) training program for eliciting strength and power gains. In addition, the eccentric phase of this ballistic movement appears to have important implications for eliciting these strength gains in college football players during an off-season training program. Thus, coaches incorporating jump squats (using both concentric and eccentric phases of contraction) in the off-season training programs of their athletes can see significant performance improvements during a relatively short duration of training.  相似文献   

19.
The vertical jump is a performance test commonly used to assess explosive power and predict athletic ability. Typically, the vertical jump is performed with a countermovement from a stationary stance. We hypothesized that taking a quick step back before initiating the jump, known as the drop-step technique, would result in a higher vertical jump. The purpose of this study was to compare countermovement vertical jumps (CMJs) done from the stationary-stance position to CMJs performed with the drop-step with trained athletes. NCAA Division I football players (N = 56) performed 3 trials each of stationary-stance and drop-step CMJs in a random order. A paired t test revealed that a significantly (p < 0.01) higher jump height was achieved with the drop-step CMJ (69.3 +/- 8.0 cm) compared to the stationary-stance CMJ (66.5 +/- 8.0 cm). The 2 jump conditions were highly related (r = 0.95), and the rank order of the athletes tended to be similar from 1 condition to the other (rho = 0.94). Trial-to-trial reliability was similar for each condition (coefficient of variation [CV] = 3.5% stationary stance; CV = 4.1% drop step). It is important to standardize CMJ testing procedures because a significant difference in the height achieved exists between the stationary-stance and drop-step techniques.  相似文献   

20.
The purpose of this study was to assess the usefulness of the vertical jump and estimated vertical-jump power as a field test for weightlifting. Estimated PP output from the vertical jump was correlated with lifting ability among 64 USA national-level weightlifters (junior and senior men and women). Vertical jump was measured using the Kinematic Measurement System, consisting of a switch mat interfaced with a laptop computer. Vertical jumps were measured using a hands-on-hips method. A counter-movement vertical jump (CMJ) and a static vertical jump (SJ, 90 degrees knee angle) were measured. Two trials were given for each condition. Test-retest reliability for jump height was intra-class correlation (ICC) = 0.98 (CMJ) and ICC = 0.96 (SJ). Athletes warmed up on their own for 2-3 minutes, followed by 2 practice jumps at each condition. Peak power (PP) was estimated using the equations developed by Sayers et al. (24). The athletes' current lifting capabilities were assessed by a questionnaire, and USA national coaches checked the listed values. Differences between groups (i.e., men versus women, juniors versus resident lifters) were determined using t-tests (p < or = 0.05). Correlations were determined using Pearson's r. Results indicate that vertical jumping PP is strongly associated with weightlifting ability. Thus, these results indicate that PP derived from the vertical jump (CMJ or SJ) can be a valuable tool in assessing weightlifting performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号