首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: We prospectively analyzed the cancellous and cortical periprosthetic femoral bone reaction after implantation of a cementless total hip arthroplasty with computertomography assisted osteodensitometry after a mean of 1 and 6 years. MATERIALS AND METHODS: Twenty-one patients (? age at implantation: 52 years) with osteoarthrits of the hip joint received 21 cementless hip prostheses with a three-dimensionally tapered design. All patients were analyzed clinically, with CT-osteodensitometry and plain radiography after a mean of 10 days, at 1 and 6 years postoperatively. Cancellous and cortical bone density was evaluated automatically using a special software tool. RESULTS: The proximal region of the stem showed progessive cortical (? -15% 1 year, -25% 6 years post-OP) and cancellous (? -26% 1 year, -49% 6 years post-OP) bone density loss. Cortical bone density loss was lower and non-progressive at the diaphysis (? -7% 1 year, -9% 6 years post-OP) and the distal region (? -6% 1 year, -4% 6 years post-OP) of the stem. All stems showed no signs of loosening on plain radiography and good clinical results according to the Harris hip score. CONCLUSION: Computertomography assisted osteodensitometry is the only method which allows discrimination between periprosthetic cortical and cancellous bone density changes in vivo. The analyzed uncemented stem fixates at the diaphysis and distal region. Due to the changed biomechanical loading after stem implantation, progressive proximal cancellous bone density loss was measured for the first time in vivo. Its role in the pathogenesis of implant loosening is still unknown and needs to be further elucidated.  相似文献   

2.
In cementless total hip arthroplasty, osteoporosis may jeopardize the achievement of immediate stability and lead to migration of anatomically shaped femoral stems. Poor quality of proximal cancellous bone per se may also affect the rate of osseointegration. In a selected group of female total hip arthroplasty patients (mean age 64 years) with unremarkable medical history, intertrochanteric cancellous bone biopsy was taken from the site of stem implantation. Local bone quality, determined by structural μCT imaging and destructive compression testing of the biopsy tissue, was used as the predictor of three-dimensional stem migration determined by radiostereometric analysis (RSA) up to 24 months. The patients exhibited major differences in mechanical properties of the intertrochanteric cancellous bone, which were closely related to the structural parameters calculated from μCT data. Unexpectedly, the major differences observed in the quality of trochanteric cancellous bone had only minor reflections in the RSA migration of the femoral stems. In statistical analysis, the μCT-based bone mineral density quartile (low, middle, high) was the only significant predictor for stem translation at 24 months (p=0.022) but only a small portion (R(2)=0.16) of the difference in translation could be explained by changes in bone mineral density quartile. None of the other parameters investigated predicted stem migration in translation or rotation. In conclusion, poor quality of intertrochanteric cancellous bone seems to contribute to the risk of implant migration less than expected. Probably also the importance of surgical preservation of intertrochanteric cancellous bone has been over-emphasized for osseointegration of cementless stem.  相似文献   

3.
目的:探讨初次行全髋关节置换术后使用阿仑膦酸钠单一用药或阿仑膦酸钠与阿法骨化醇联合用药对患者假体周围骨矿物 质流失的疗效。方法:将60 名患者按照随机数字表法分为阿仑膦酸钠单一药物治疗组(n=18)、阿仑膦酸钠和阿法骨化醇联合治 疗组(n=20)和无药物治疗组(n=22)。术后1、12、24 和48 周,对患者假体周围骨矿物质密度(BMD)和生化标志物进行检测,比较 检测区域测量值的变化。结果:单个测量周期中,单一药物治疗组和联合药物治疗组在股骨矩区域的BMD 均高于无药物治疗组 (P<0.01)。单一药物治疗组和联合药物治疗组尿Ⅰ型胶原N端肽的血浆浓度与骨碱性磷酸酶浓度显著低于无药物治疗组(P< 0.01)。结论:单一药物治疗和联合治疗能显著预防假体周围的骨矿物质流失,尤其对预防股骨矩位置的骨矿物质流失效果显著。  相似文献   

4.
目的:研究唑来膦酸在治疗原发性骨质疏松症过程中患者骨密度及疼痛的变化。方法:设计为期两年的随机、前瞻性研究,通过Achilles定量超声(QUS)系统测量骨密度(BMD),进行问卷调查、疼痛评估,共入选60例原发性骨质疏松症患者。随机分为唑来膦酸组和对照组,唑来膦酸组使用唑来膦酸及元素钙治疗;对照组使用元素钙治疗。治疗前后分别进行骨密度测定及疼痛评估,进行对比研究。结果:治疗两年后.与治疗前比较,唑来膦酸组BMD上升(P〈0.05);对照组BMD无明显变化(P〉0.05)。两组临床获益率分别为73.33%和46.67%,无显著差别(P〉0.05)。结论:唑来膦酸治疗原发性骨质疏松症有良好作用,能提高骨密度,对骨质疏松的治疗及预防骨折具有重要的意义。  相似文献   

5.
Large interfacial gaps between the stem and the bone in cementless total hip arthroplasty may prevent successful bone ingrowth at the sites, and can also be a passage for wear particles. Furthermore, interfacial gaps between the stem and the bone are believed to compromise the primary stability of the implant. Thus, a broaching method that serves to reduce gaps is expected to give clinically preferable results. A modified broach system with a canal guide is introduced to enhance the accuracy of femoral canal shaping in comparison with the conventional broach system for a Versys fibermetal taper stem. The primary stability of the hip systems and the ratios of the stem surface in contact with the femur were measured in a composite femur model. With the conventional method, an average of 67% of the stem surface was shown to be in contact with the bone, and an average stem micromotion/migration of 35 microm 290 microm was observed under 1000 cycles of stair climbing loads. With the modified method, the stem-bone contact ratio significantly increased to 82% (p<0.05), and the average micromotion/migration reduced to 29 microm 49 microm, respectively (p<0.05 for migration). Our finite element models of the hip systems supported that the difference in micromotion could be attributed to the difference in interfacial contact. Interfacial gaps occurring with the conventional broach system were effectively reduced by the proposed method, resulting in improved primary stability.  相似文献   

6.
Cemented femoral stems have shown decreased longevity compared to cementless implants in hip revision arthroplasty. The aim of this study was to evaluate the effect of an amphiphilic bonder on bone cement stability in a biomechanical femur expulsion test. A simplified hip simulator test setup with idealised femur stem specimens was carried out. The stems were implanted into bovine femurs (group 1: no bonder, n=10; group 2: bonder including glutaraldehyde, n=10; group 3: bonder without glutaraldehyde, n=10). A dynamic loading (maximum load: 800 N; minimum load: 100 N; frequency: 3 Hz; 105 cycles) was performed. Subsequently, the stem specimens were expulsed axially out of their implant beds and maximum load at failure was recorded. The static controls showed a mean maximum load to failure of 4123 N in group 1, 8357.5 N in group 2 and 5830.8 N in group 3. After dynamic loading, the specimens of group 2 reached the highest load to failure (8191.5 N), followed by group 3 (5649.5 N) and group 1 (3462 N), respectively. In group 2, we observed nine periprosthetic fractures at a load of 8400 N without signs of interface loosening. Application of an amphiphilic bonder led to a significant improvement of bonding stability, especially when glutaraldehyde was added to the bonder. This technique might offer an increased longevity of cemented femur revision stems in total hip replacement.  相似文献   

7.
The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10 μm and the maximal micromotion was 60 μm, in the loading direction, at 1400 N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.  相似文献   

8.

Introduction

Treatment of femoral neck fractures in young adults may require total hip arthroplasty or hip hemiarthroplasty using a bipolar cup. The latter can, however, result in migration of the femoral head and poor long-term results.

Case presentation

We report a case of femoral head migration after hemiarthroplasty performed for femoral neck fracture that had occurred 22 years earlier, when the patient (a Japanese man) was 20 years old. He experienced peri-prosthetic fracture of the femur, subsequent migration of the prosthesis, and a massive bone defect of the pelvic side acetabular roof. After bone union of the femoral shaft fracture, the patient was referred to our hospital for reconstruction of the acetabular roof. Intra-operatively, we placed two alloimplants of bone from around the transplanted femoral head into the weight-bearing region of the acetabular roof using an impaction bone graft method. We then implanted an acetabular roof reinforcement plate and a cemented polyethylene cup in the position of the original acetabular cup. Eighteen months post-operatively, X-rays showed union of the transplanted bone.

Conclusions

Treatment of femoral neck fractures in young adults is usually accomplished by osteosynthesis, but it may be complicated by femoral head avascular necrosis or by infection or osteomyelitis. In such cases, once an infection has subsided, either hip hemiarthroplasty using a bipolar cup or total hip arthroplasty may be required. However, if the acetabular side articular cartilage is damaged, a bipolar cup should not be used. Total hip arthroplasty should be performed to prevent migration of the implant.  相似文献   

9.
Total hip arthroplasty represents a major surgical achievement for pain relief and restoration of lifestyle quality due to the joint disease of osteoarthritis. Total hip replacement has evolved over the past 30 years utilising a variety of biocompatible materials, geometric shapes and fixation techniques. The main objective of this study is to investigate the long-term effects of strain adaptive bone remodelling due to the influence of a novel titanium cementless femoral hip replacement. The period of on-growth has been taken into account and the simulation has been run to predict the remodelling behaviour for a 36-month period. The main conclusion from this analysis is that the implant does shield the calcar to a similar degree as other cementless femoral hip designs. It does, however, tend to cause bone to be laid down along its length. This may, in part, be due to the novel geometry of the implant interlocking with and loading the bone.  相似文献   

10.
Total hip arthroplasty represents a major surgical achievement for pain relief and restoration of lifestyle quality due to the joint disease of osteoarthritis. Total hip replacement has evolved over the past 30 years utilising a variety of biocompatible materials, geometric shapes and fixation techniques. The main objective of this study is to investigate the long-term effects of strain adaptive bone remodelling due to the influence of a novel titanium cementless femoral hip replacement. The period of on-growth has been taken into account and the simulation has been run to predict the remodelling behaviour for a 36-month period. The main conclusion from this analysis is that the implant does shield the calcar to a similar degree as other cementless femoral hip designs. It does, however, tend to cause bone to be laid down along its length. This may, in part, be due to the novel geometry of the implant interlocking with and loading the bone.  相似文献   

11.
Stress shielding-related bone loss occurs after total hip arthroplasty because the stiffness of metallic implants differs from that of the host femur. Although reducing stem stiffness can ameliorate the bone resorption, it increases stress at the bone–implant interface and can inhibit fixation. To overcome this complication, a novel cementless stem with a gradient in Young’s modulus was developed using Ti-33.6Nb-4Sn (TNS) alloy. Local heat treatment applied at the neck region for increasing its strength resulted in a gradual decrease in Young’s modulus from the proximal to the distal end, from 82.1 to 51.0 GPa as calculated by a heat transfer simulation. The Young’s modulus gradient did not induce the excessive interface stress which may cause the surface debonding. The main purpose of this study was to evaluate bone remodeling with the TNS stem using a strain-adaptive bone remodeling simulation based on finite element analysis. Our predictions showed that, for the TNS stem, bone reduction in the calcar region (Gruen zone 7) would be 13.6% at 2 years, 29.0% at 5 years, and 45.8% at 10 years postoperatively. At 10 years, the bone mineral density for the TNS stem would be 42.6% higher than that for the similar Ti-6Al-4V alloy stem. The stress–strength ratio would be lower for the TNS stem than for the Ti-6Al-4V stem. These results suggest that although proximal bone loss cannot be eliminated completely, the TNS stem with a Young’s modulus gradient may have bone-preserving effects and sufficient stem strength, without the excessive interface stress.  相似文献   

12.
The success of a total hip arthroplasty is strongly related to the initial stability of the femoral component and to the stress shielding effect. In fact, for cementless stems, initial stability is essential to promote bone ingrowth into the stem coating. An inefficient primary stability is also a cause of thigh pain. In addition, the bone adaptation after the surgery can lead to an excessive bone loss and, consequently, can compromise the success of the implant. These factors depend on prosthesis design, namely on material, interface conditions and shape. Although, surgeons use stems with very different geometries, new computational tools using structural optimization methods have been used to achieve a better design in order to improve initial stability and therefore, the implant durability. In this work, a multi-criteria shape optimization process is developed to study the relationship between implants performance and geometry. The multi-criteria objective function takes into account the initial stability of the femoral stem and the effect of stress shielding on bone adaptation after the surgery. Then, the optimized stems are tested using a concurrent model for bone remodeling and osseointegration to evaluate long-term performance. Additionally, the sensitivity to misalignments is analyzed, since femoral stems are often placed in varus or valgus position. Results show that the different criteria are contradictory resulting in different characteristics for the hip stem. However, the multi-criteria formulation leads to compromise solutions, with a combination of the geometric characteristics obtained for each criterion separately.  相似文献   

13.
The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone.The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem,flexible 'iso-elastic' stem,one-dimensional Functionally Graded Material (FGM) stem and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis.The distributions of bone density,von Mises stress,and interface shear stress were obtained.The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials,thus the host bone is well preserved.Accordingly,the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view.The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants,which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.  相似文献   

14.
The mechanism underling bone mineral density (BMD) loss that occurs in the femur after total hip arthroplasty (THA) remains unknown. We compared the equivalent stress and strain energy density (SED) to BMD in the femur after THA using subject-specific finite element analyses. Twenty-four patients who had undergone primary cementless THA were analysed. BMD was measured using dual-energy X-ray absorptiometry (DEXA) at 1 week and 3, 6 and 12 months after THA. Seven regions of interest (ROIs) were defined in accordance with Gruen's system (ROIs 1–7). Computed tomography images of the femurs were acquired pre- and postoperatively, and the images were converted into three-dimensional finite element (FE) models. Equivalent stress and SED were analysed and compared with DEXA data. BMD was maintained 1 year after THA in ROIs 3, 4, 5 and 6, whereas BMD decreased in ROIs 1, 2 and 7. FE analysis revealed that equivalent stress in ROIs 3, 4, 5 and 6 was much higher than that in ROIs 1, 2 and 7. A significant correlation was observed between the rate of changes in BMD and equivalent stress. Reduction of equivalent stress may contribute to decrease in BMD in the femur after THA.  相似文献   

15.
One of the crucial factors for short- and long-term clinical success of total hip arthroplasty cementless implants is primary stability. Indeed, motion at the bone–implant interface above 40 μm leads to partial bone ingrowth, while motion exceeding 150 μm completely inhibits bone ingrowth. The aim of this study was to investigate the effect of two cementless femoral stem designs with different lengths on the primary stability. A finite element model of a composite Sawbones® fourth generation, implanted with five lengths of the straight prosthesis design and four lengths of the curved prosthesis design, was loaded with hip joint and abductor forces representing two physiological activities: fast walking and stair climbing. We found that reducing the straight stem length from 146 to 54 mm increased the average micromotion from 17 to 52 μm during fast walking, while the peak value increased from 42 to 104 μm. With the curved stem, reducing length from 105 to 54 mm increased the average micromotion from 10 to 29 μm, while the peak value increased from 37 to 101 μm. Similar findings are obtained for stair climbing for both stems. Although the present study showed that femoral stem length as well as stem design directly influences its primary stability, for the two femoral stems tested, length could be reduced substantially without compromising the primary stability. With the aim of minimising surgical invasiveness, newer femoral stem design and currently well performing stems might be used with a reduced length without compromising primary stability and hence, long-term survivorship.  相似文献   

16.
The aim of this investigation was to evaluate a new method developed for the measurement of bone mineral density and bone remodelling phenomena after total hip arthroplasty using computer tomography. Computertomography is a radiological technique to examine bone structures in high resolution. Using an extended scale it is possible to investigate bone scans and implants with fewer metal artifacts. For osteodensitometry measurement a special software (IMPact HIP) for the analysis of the data was used. The measured parameters were the overall bone mineral density (mg Calcium-Hydroxyapatite/ml) and the cortical bone structure. A standard scan mode enable to compare the computertomography scans at follow-up. Nineteen total hip arthroplasty patients (20 hips) with a mean age of 58 years (31-70) were operated on using an uncemented titanium alloy stem with a tapered design. The periprosthetic bone was assessed using computertomography-assisted osteodensitometry two weeks and one year after surgery. We observed a decrease of the overall bone mineral density (15%) and of the cortical bone structure (20%) one year after insertion of the stem in the proximal part of the femur. The area corresponds to the Gruen zones 1 and 7. On the other hand, a decrease of mineral density of 5% for the overall bone and of 3% for the cortical bone was found at the level of the tip of the stem, which corresponds to the Gruen zones 3, 4 and 5. Computertomography-assisted osteodensitometry allows to investigate the bone remodelling after total hip arthroplasty by separating the analysis of the overall bone mineral density and of the cortical structure. The present method is a reliable tool for quality-control in total hip arthroplasty.  相似文献   

17.
The initial stability of cementless femoral components is crucial for the long-term success of total hip arthroplasty. This has been reported in animal and clinical studies. Until now, the stability was evaluated by the measurement of relative micromotion on a few simultaneous locations around the stem in cadaveric experiments. This paper presents an extended experimental setup to measure simultaneously local micromotion, subsidence and gap on hundreds of points at the bone-stem interface. This technique we applied to anatomical and straight stems in three pairs of cadaveric femurs. Measurements were in agreement with typically reported values. Conversely to other methods, which measure micromotion between implant and bone anchoring points of the measuring device, our method provides local micromotion between stem surface and adjacent bone surface. The observed variation of micromotion at the peri-implant surface confirms the importance of this simultaneous measure on a lot of points around the implant.  相似文献   

18.

Background  

A hip replacement with a cemented or cementless femoral stem produces an effect on the bone called adaptive remodelling, attributable to mechanical and biological factors. All of the cementless prostheses designs try to achieve an optimal load transfer in order to avoid stress-shielding, which produces an osteopenia.  相似文献   

19.
Zoledronic acid, a highly potent nitrogen-containing bisphosphonate used for the treatment of pathological bone loss, is excreted unmetabolized via the kidney if not bound to the bone. In cancer patients receiving high doses of the compound renal excretion may be associated with acute tubular necrosis. The question of how zoledronic acid is internalized by renal tubular cells has not been answered until now. In the current work, using a primary human tubular cell culture system, the pathway of cellular uptake of zoledronic acid (fluorescently/radiolabeled) and its cytotoxicity were investigated. Previous studies in our laboratory have shown that this primary cell culture model consistently mimics the physiological characteristics of molecular uptake/transport of the epithelium in vivo. Zoledronic acid was found to be taken up by tubular cells via fluid-phase-endocytosis (from apical and basolateral side) as evidenced by its co-localization with dextran. Cellular uptake and the resulting intracellular level was twice as high from the apical side compared to the basolateral side. Furthermore, the intracellular zoledronic acid level was found to be dependent on the administered concentration and not saturable. Cytotoxic effects however, were only seen at higher administration doses and/or after longer incubation times. Although zoledronic acid is taken up by tubular cells, no net tubular transport could be measured. It is concluded that fluid-phase-endocytosis of zoledronic acid and cellular accumulation at high doses may be responsible for the acute tubular necrosis observed in some cancer patients receiving high doses of the compound.  相似文献   

20.
Bone stock losses in cementless femoral stem revisions compromise a stable fixation. The surgeon has to rely on his wealth of experience in deciding which stem shape to use. The aim of our study was to compare the primary rotational stability of cylindrical and conical revision hip stems subjected to femoral defects. Four current prostheses (two cylindrical, two conical) were implanted into four synthetic femora. Micro-motion was measured under torque application and femoral neck osteotomy and segmental AAOS Type I and III defects were simulated. The relative movements of all prostheses were significantly influenced by the extent of bone loss (p<0.01). Major differences were seen in fixation behavior (p<0.01). The main fixation area of conical stems is within the distal femoral isthmus, whereas cylindrical implants are dependent on proximal bone stock. In our study, cylindrical stems are advantageous for minor defects because they provide a proximal fixation. In cases of extensive substance loss, the conical implants showed lesser relative movements. These findings should be taken into account for clinical decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号