首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 3 毫秒
1.
We study the nonlinear interaction of an aortic heart valve, composed of hyperelastic corrugated leaflets of finite density attached to a stented vessel under physiological flow conditions. In our numerical simulations, we use a 2D idealised representation of this arrangement. Blood flow is caused by a time-varying pressure gradient that mimics that of the aortic valve and corresponds to a peak Reynolds number equal to 4050. Here, we fully account for the shear-thinning behaviour of the blood and large deformations and contact between the leaflets by solving the momentum and mass balances for blood and leaflets. The mixed finite element/Galerkin method along with linear discontinuous Lagrange multipliers for coupling the fluid and elastic domains is adopted. Moreover, a series of challenging numerical issues such as the finite length of the computational domain and the conditions that should be imposed on its inflow/outflow boundaries, the accurate time integration of the parabolic and hyperbolic momentum equations, the contact between the leaflets and the non-conforming mesh refinement in part of the domain are successfully resolved. Calculations for the velocity and the shear stress fields of the blood reveal that boundary layers appear on both sides of a leaflet. The one along the ventricular side transfers blood with high momentum from the core region of the vessel to the annulus or the sinusoidal expansion, causing the continuous development of flow instabilities. At peak systole, vortices are convected in the flow direction along the annulus of the vessel, whereas during the closure stage of the valve, an extremely large vortex develops in each half of the flow domain.  相似文献   

2.
The Ross operation is a complex procedure for aortic valve replacement in which the pulmonary autograft is replaced by a homograft. However, homograft availability is becoming limited. This report evaluates the performance of porcine stentless prostheses as alternative pulmonary substitutes. Echocardiographic results from two patient cohorts were compared at time of discharge and 1 year after a Ross procedure. Thirty-three patients (median age 42 years, range 17–62 years, 76% male) received a stentless prosthesis (median size 25.6 mm, range 25–29 mm) for right ventricular outflow tract reconstruction. Clinical data were not significantly different from 106 patients (median age 47 years, range 2–68 years, 75% male) who received cryopreserved homografts (median size 26 mm, range 20–33 mm). At time of discharge, peak pressure gradients (ΔPmax) across the stentless valve (median ΔPmax 13 mmHg, range 2–26 mmHg) were higher compared to homografts (median ΔPmax 7 mmHg, range 1–32 mmHg, p<0.001). At 1 year, gradients increased in both groups, but were significantly higher across stentless valves (median ΔPmax 23 mmHg, range 10–81 mmHg vs. median ΔPmax 13 mmHg, range 2–74 mmHg, p<0.001). Eleven patients (33%) in the stentless-valve group were classified “at risk” with a ΔPmax of ≥30 mmHg. Four of them (12%) had to be re-operated. In conclusion, stentless valves showed higher pressure gradients and their performance was inferior to cryopreserved homografts. See accompanying commentary by Ulrich Stock DOI: 10.1002/biot.201200341  相似文献   

3.
The behavior of blood cells and vessel compliance significantly influence hemodynamic parameters, which are closely related to the development of aortic dissection. Here the two-phase non-Newtonian model and the fluid-structure interaction (FSI) method are coupled to simulate blood flow in a patient-specific dissected aorta. Moreover, three-element Windkessel model is applied to reproduce physiological pressure waves. Important hemodynamic indicators, such as the spatial distribution of red blood cells (RBCs) and vessel wall displacement, which greatly influence the hemodynamic characteristics are analyzed. Results show that the proximal false lumen near the entry tear appears to be a vortex zone with a relatively lower volume fraction of RBCs, a low time-averaged wall shear stress (TAWSS) and a high oscillatory shear index (OSI), providing a suitable physical environment for the formation of atherosclerosis. The highest TAWSS is located in the narrow area of the distal true lumen which might cause further dilation. TAWSS distributions in the FSI model and the rigid wall model show similar trend, while there is a significant difference for the OSI distributions. We suggest that an integrated model is essential to simulate blood flow in a more realistic physiological environment with the ultimate aim of guiding clinical treatment.  相似文献   

4.
In some cases of aortic valve leaflet disease, the implant of a stentless biological prosthesis represents an excellent option for aortic valve replacement (AVR). In particular, if compared with the implant of mechanical valves, it provides a more physiological haemodynamic performance and a reduced thrombogeneticity, avoiding the use of anticoagulants. The clinical outcomes of AVR are strongly dependent on an appropriate choice of both prosthesis size and replacement technique, which is, at present, strictly related to surgeon's experience and skill. This represents the motivation for patient-specific finite element analysis able to virtually reproduce stentless valve implantation. With the aim of performing reliable patient-specific simulations, we remark that, on the one hand, it is not well established in the literature whether bioprosthetic leaflet tissue is isotropic or anisotropic; on the other hand, it is of fundamental importance to incorporate an accurate material model to realistically predict post-operative performance. Within this framework, using a novel computational methodology to simulate stentless valve implantation, we test the impact of using different material models on both the stress pattern and post-operative coaptation parameters (i.e. coaptation area, length and height). As expected, the simulation results suggest that the material properties of the valve leaflets affect significantly the post-operative prosthesis performance.  相似文献   

5.
Plaque morphology and biomechanics are believed to be closely associated with plaque progression. In this paper, we test the hypothesis that integrating morphological and biomechanical risk factors would result in better predictive power for plaque progression prediction. A sample size of 374 intravascular ultrasound (IVUS) slices was obtained from 9 patients with IVUS follow-up data. 3D fluid-structure interaction models were constructed to obtain both structural stress/strain and fluid biomechanical conditions. Data for eight morphological and biomechanical risk factors were extracted for each slice. Plaque area increase (PAI) and wall thickness increase (WTI) were chosen as two measures for plaque progression. Progression measure and risk factors were fed to generalized linear mixed models and linear mixed-effect models to perform prediction and correlation analysis, respectively. All combinations of eight risk factors were exhausted to identify the optimal predictor(s) with highest prediction accuracy defined as sum of sensitivity and specificity. When using a single risk factor, plaque wall stress (PWS) at baseline was the best predictor for plaque progression (PAI and WTI). The optimal predictor among all possible combinations for PAI was PWS + PWSn + Lipid percent + Min cap thickness + Plaque Area (PA) + Plaque Burden (PB) (prediction accuracy = 1.5928) while Wall Thickness (WT) + Plaque Wall Strain (PWSn) + Plaque Area (PA) was the best for WTI (1.2589). This indicated that PAI was a more predictable measure than WTI. The combination including both morphological and biomechanical parameters had improved prediction accuracy, compared to predictions using only morphological features.  相似文献   

6.
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid–structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.  相似文献   

7.
Our knowledge of how geometry influences abdominal aortic aneurysm (AAA) biomechanics is still developing. Both iliac bifurcation angle and proximal neck angle could impact the haemodynamics and stresses within AAA. Recent comparisons of the morphology of ruptured and intact AAA show that cases with large iliac bifurcation angles are less likely to rupture than those with smaller angles. We aimed to perform fluid-structure interaction (FSI) simulations on a range of idealised AAA geometries to conclusively determine the influence of proximal neck and iliac bifurcation angle on AAA wall stress and haemodynamics.Peak wall shear stress (WSS) and time-averaged WSS (TAWSS) in the AAA sac region only increased when the proximal neck angle exceeded 30°. Both peak WSS (p < 0.0001) and peak von Mises wall stress (p = 0.027) increased with iliac bifurcation angle, whereas endothelial cell activation potential (ECAP) decreased with iliac bifurcation angle (p < 0.001) and increased with increasing neck angle.These observations may be important as AAAs have been shown to expand, develop thrombus and rupture in areas of low WSS. Here we show that AAAs with larger iliac bifurcation angles have higher WSS, potentially reducing the likelihood of rupture. Furthermore, ECAP was lower in AAA geometries with larger iliac bifurcation angles, implying less likelihood of thrombus development and wall degeneration. Therefore our findings could help explain the clinical observation of lower rupture rates associated with AAAs with large iliac bifurcation angles.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号