首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subject-specific musculoskeletal models require accurate values of muscle moment arms. The aim of this study was to compare moment arms of wrist tendons obtained from non-invasive magnetic resonance imaging (MRI) to those obtained from an in vitro experimental approach. MRI was performed on ten upper limb cadaveric specimens to obtain the centrelines for the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), and abductor pollicis longus (APL) tendons. From these, the anatomical moment arms about each of the flexion-extension (FE) and radioulnar deviation (RUD) axes of the wrist were calculated. Specimens were mounted on a physiologic wrist simulator to obtain functional measurements of the moment arms using the tendon excursion method. No differences were observed between anatomical and functional values of the FE and RUD moment arms of FCR, ECRL and ECRB, and the RUD moment arm of ECU (p > .075). Scaling the anatomical moment arms relative to ECRB in FE and ECU in RUD reduced differences in the FE moment arm of FCU and the RUD moment arm of APL to less than 15% (p > .139). However, differences persisted in moment arms of FCU in RUD, and ECU and APL in FE (p < .008). This study shows that while measurements of moment arms of wrist tendons using imaging do not always conform to values obtained using in vitro experimental approaches, a stricter protocol could result in the acquisition of subject-specific moment arms to personalise musculoskeletal models.  相似文献   

2.
Although the orientations of the hand and forearm vary for different wrist rehabilitation protocols, their effect on muscle forces has not been quantified. Physiologic simulators enable a biomechanical evaluation of the joint by recreating functional motions in cadaveric specimens. Control strategies used to actuate joints in physiologic simulators usually employ position or force feedback alone to achieve optimum load distribution across the muscles. After successful tests on a phantom limb, unique combinations of position and force feedback – hybrid control and cascade control – were used to simulate multiple cyclic wrist motions of flexion-extension, radioulnar deviation, dart thrower’s motion, and circumduction using six muscles in ten cadaveric specimens. Low kinematic errors and coefficients of variation of muscle forces were observed for planar and complex wrist motions using both novel control strategies. The effect of gravity was most pronounced when the hand was in the horizontal orientation, resulting in higher extensor forces (p < 0.017) and higher out-of-plane kinematic errors (p < 0.007), as compared to the vertically upward or downward orientations. Muscle forces were also affected by the direction of rotation during circumduction. The peak force of flexor carpi radialis was higher in clockwise circumduction (p = 0.017), while that of flexor carpi ulnaris was higher in anticlockwise circumduction (p = 0.013). Thus, the physiologic wrist simulator accurately replicated cyclic planar and complex motions in cadaveric specimens. Moreover, the dependence of muscle forces on the hand orientation and the direction of circumduction could be vital in the specification of such parameters during wrist rehabilitation.  相似文献   

3.
Anatomical partitioning of three multiarticular human muscles.   总被引:3,自引:0,他引:3  
To examine neuromuscular partitioning within human muscles, the innervation patterns and muscle fiber architecture of the flexor carpi radialis (FCR), extensor carpi radialis longus (ECRL) and lateral gastrocnemius (LG) muscles were examined. Consistent patterns of innervation between specimens were found within each of the three muscles. The nerve to the FCR clearly innervates three major architectural divisions of the muscle. The ECRL is innervated by two different muscle nerves. Branches of these nerves innervate at least two distinct anatomical subvolumes. However, the subvolumes of the ECRL defined by muscle architecture are not totally congruent with those defined by the innervation pattern. In the LG, the single muscle nerve branches into two main divisions, and these subsequently divide into branches which supply the three heads. However, each head does not receive a completely private nerve. These results indicate that human muscles are partitioned in a manner roughly similar to the divisions of the same muscles in cats and rats, but with less congruency of architecture and innervation.  相似文献   

4.
Motion and force produced by electrical neuromuscular stimulation (ENS) to each of the extensor carpi radialis longus (ECRL) and brevis (ECRB), and extensor carpi ulnaris (ECU) with the prone (P), semiprone (SP), and supine forearm (S) were studied in ten normal human subjects. Abduction (AB), extension (E), adduction (AD), and flexion (F) directions were represented by, respectively, 0°, 90°, 180°, and 270°. ENS to ECRL, ECRB, and ECU produced motion in direction of, respectively, 60° (mean), 87°, and 205° with P, 66°, 83°, and 166° with SP, and 47°, 66°, and 116° with S to maximal range. Direction/strength (Nm) of force by ENS to ECRL, ECRB, and ECU were, respectively, 54°/1.75, 74°/1.78, and 184°/1.49 with P, 34°/1.65, 63°/1.66, and 152°/1.43 with SP, and 32°/1.66, 70°/1.49, and 147°/1.25 with S. ENS to ECRL exhibited force of 15–20% of maximal E (15–20%Max-E) and 19–29%Max-AB, that to ECRB 24–32%Max-E, and that to ECU 17–30%Max-AD. The force study results suggest that ECRL is an abductor and extensor and ECRB is an extensor rather than an abductor. ECU should be an adductor rather than an extensor with SP and S and an adductor with P. The data must contribute to reconstruct motor functions of paralyzed hands.  相似文献   

5.
In order to elucidate the functional significance of excitatory spinal reflex arcs (facilitation) between musculus (M.) pronator teres (PT) and M. extensor carpi radialis (ECR, longus: ECRL, brevis: ECRB) in humans, activities of the muscles were studied with electromyography (EMG) and electrical neuromuscular stimulation (ENS). In EMG study, activities of PT, ECRL, ECRB, and M. flexor carpi radialis during repetitive static (isometric) wrist extension and a series of a dynamic motion of wrist flexion/extension in the prone, semiprone, and supine positions of the forearm were recorded in 12 healthy human subjects. In the prone, semiprone, and supine positions, PT and ECR showed parallel activities during the static extension in all, eight, and eight subjects, respectively, and at the extension phase during the dynamic motion in all, eight and five subjects, respectively. These findings suggest that co-contraction of PT and ECR occurs during wrist extension movements at least with the prone forearm. The facilitation must be active during the co-contraction. In ENS study, ENS to PT was examined in 11 out of the 12 and that to ECRL was in the 12 subjects. Before ENS, the forearm was in the prone, semiprone, and supine positions. In all the subjects, ENS to PT induced a motion of forearm pronation to the maximum pronation. ENS to ECRL induced motions of wrist extension to the maximum extension and abduction (radial flexion) to 5-20 degrees of abduction regardless of the positions of the forearm. Moreover, it induced 30-80 degrees supination of the forearm from the prone position. Consequently, combined ENS to PT and ECRL resulted in motions of the extension and abduction while keeping the maximum pronation. These findings suggest that the co-contraction of PT and ECR during wrist extension movements occurs to prevent supinating the forearm. Forearm supination from the prone position should be added to one of the actions of ECRL.  相似文献   

6.
Objective:This paper presents the analyses of the fatigue effect on the cross-talk in mechanomyography (MMG) signals of extensor and flexor forearm muscles during pre- and post-fatigue maximum voluntary isometric contraction (MVIC).Methods:Twenty male participants performed repetitive submaximal (60% MVIC) grip muscle contractions to induce muscle fatigue and the results were analyzed during the pre- and post-fatigue MVIC. MMG signals were recorded on the extensor digitorum (ED), extensor carpi radialis longus (ECRL), flexor digitorum superficialis (FDS) and flexor carpi radialis (FCR) muscles. The cross-correlation coefficient was used to quantify the cross-talk values in forearm muscle pairs (MP1, MP2, MP3, MP4, MP5 and MP6). In addition, the MMG RMS and MMG MPF were calculated to determine force production and muscle fatigue level, respectively.Results:The fatigue effect significantly increased the cross-talk values in forearm muscle pairs except for MP2 and MP6. While the MMG RMS and MMG MPF significantly decreased (p<0.05) based on the examination of the mean differences from pre- and post-fatigue MVIC.Conclusion:The presented results can be used as a reference for further investigation of cross-talk on the fatigue assessment of extensor and flexor muscles’ mechanic.  相似文献   

7.
The purpose of this study was to investigate how gripping modulates forearm muscle co-contraction prior to and during sudden wrist perturbations. Ten males performed a sub-maximal gripping task (no grip, 5% and 10% of maximum) while a perturbation forced wrist flexion or extension. Wrist joint angles and activity from 11 muscles were used to determine forearm co-contraction and muscle contributions to wrist joint stiffness. Co-contraction increased in all pairs as grip force increased (from no grip to 10% grip), corresponding to a 36% increase in overall wrist joint stiffness. Inclusion of individual muscle contributions to wrist joint stiffness enhanced the understanding of forearm co-contraction. The extensor carpi radialis longus (ECRL) and brevis had the largest stiffness contributions (34.5 ± 1.3% and 20.5 ± 2.3%, respectively), yet muscle pairs including ECRL produced the lowest co-contraction. The muscles contributing most to wrist stiffness were consistent across conditions (ECRL for extensors; Flexor Digitorum Superficialis for flexors), suggesting enhanced contributions rather than muscular redistribution. This work provides investigation of the neuromuscular response to wrist perturbations and gripping demands by considering both co-contraction and muscle contributions to joint stiffness. Individual muscle stiffness contributions can be used to enhance the understanding of forearm muscle control during complex tasks.  相似文献   

8.
The Sterkfontein hand bones, attributed to Australopithecus africanus, were analysed to determine potential hand function of the power grip type of this species. The metacarpus is as stable as that of modern humans, as indicated by the depth of the groove on the base of metacarpal 2, the styloid process of metacarpal 3, the base articular surface areas, and the ligament markings on the bases of the metacarpals. The flexion and rotation of metacarpal 5 might have been less than that of modern humans, due to a more marked ventral articular lip on the base. The metacarpus acts as a lever, acting in various planes. The extensor carpi ulnaris and extensor carpi radialis longus muscles were probably better developed than in modern humans. The extensor carpi radialis brevis and flexor carpi radialis muscles would probably have been as well developed as in modern humans. None of the long tendons have a mechanical disadvantage as compared to modern humans. The metacarpals have a high robusticity index. The proximal phalanges show some midshaft swelling, slightly greater curvature than in modern humans, and some side to side bowing: pongid features. The fibrous flexor sheath markings are well developed, but resemble those of modern humans rather than those of the pongids. A single middle phalanx resembles that of modern humans, and has well developed ridges for insertion of the flexor digitorum superficialis muscle. The distal phalanx of the thumb has a well developed region for insertion of the flexor pollicis longus muscle, and has a mechanical advantage over modern humans for action of this muscle at the interphalangeal joint. The features indicate that the hand of A. africanus was well adapted to powerful hand use, as in hammering, striking, chopping, scraping, and gouging actions, as well as for throwing and climbing activities.  相似文献   

9.
The m. extensor carpi radialis longus and m. flexor carpi in newborns are richly saturated in terminal sensitive apparatuses and are presented as peculiar reflexogenic zones. Quantity and topography of receptors in these zones are similar. Nevertheless, functionally different muscle areas (both in the extensor and flexor) are not equally supplied with the receptory apparatuses.  相似文献   

10.
Since a Japanese-style bow has a very complicated shape and structure, an archer has to apply the "Teno-uchi" maneuver including horizontally twisting torque, or "Nejiri", and sagittally down-pushing torque, or "Uwa-oshi", to the restoring bow in order to hit the target. The purpose of this study was to investigate the biomechanical relationship between the muscular activities of the left forearm and the operation of "Teno-uchi" maneuver. Surface EMG of left forearm muscles and the two kinds of torque acting on the bow around the time of release were recorded in 10 experienced subjects during arrow shooting. The "Biku", an involuntary resignation from release happening in the shooting, was also examined. Close analyses of the results revealed that activation of the extensor carpi ulnaris and extensor digitorum muscles together with inhibition of the flexor carpi ulnaris muscle brought about "Nejiri", while activation of the extensor carpi ulnaris as well as flexor carpi ulnaris muscles and inhibition of the extensor carpi redialis longus and extensor digitorum muscles gave rise to "Uwa-oshi", thus causing activities of trade-off nature in the extensor digitorum and flexor carpi ulnaris muscles for the "Nejiri" and "Uwa-oshi. The trade-off activities were presumably actualized through time-sharing coordination between the muscles.  相似文献   

11.
The aims of this study were to explore muscle activity levels during different violin repertoires, quantify the general levels bilaterally in upper extremity muscles, and evaluate associations between muscle activity and anthropometrics characteristics. In 18 skilled violin players surface EMG was recorded bilaterally from trapezius (UT), flexor digitorum superficialis (FDS), extensor carpi ulnaris (ECU), extensor digitorum cummunis (EDC), and extensor carpi radialis (ECR) during A and E major scales played in three octaves and Mozart’s Violin Concerto no. 5. To compare side differences the static, median and peak levels of muscle activity were calculated from an amplitude probability distribution function (APDF). This study demonstrated that scales played as standardized tasks can be used to estimate the average muscle activity during violin playing. Comparing results from scales and the music piece revealed a similar muscle activity across all muscles in the music piece and E major scales. The static, median and peak EMG levels were higher in left than in right forearm muscles with left ECU presenting the highest peak load of 30 %MVE. Females demonstrated a higher muscle activity than males, but this was in accordance with differences in anthropometric measures.  相似文献   

12.
In 12 patients, the extensor carpi radialis longus muscle tendon unit was elongated using the radial half of the parent tendon so that it could reach the site of new insertion, the A1-A2 pulley of flexor sheath or lateral bands, after routing the transfer through the carpal tunnel. The tendon was of appropriate thickness and could be split into two halves to be used as a graft. Further splitting of the tendon into four tails was possible. The transferred slips retained adequate strength to activate the fingers after the operation. It is suggested that splitting of the extensor carpi radialis longus tendon to use one half as a tendon graft be considered in patients in whom extensor carpi radialis longus transfer is planned to correct finger clawing. This technique is simple, needs minor modification in the sequence of operative steps, reduces operating time, and saves the patient from postoperative discomfort, muscle herniation, and scarring at the donor site (usually the thigh).  相似文献   

13.

1. 1. We compared the functions of POS system scanners by measuring electromyograms and joint angles during scanning in this paper.

2. 2. We have demonstrated that the space scanner is physically easy to use, movement of the wrist is natural and easy, the most suitable method for scanning perishable foods which spill easily or are fragile.

3. 3. A space scanner can be used with a bar code.

4. 4. Electromyograms were taken from M. deltoideus, M. biceps brachii, M. extensor carpi radialis longus and brevis, M. flexor carpi ulnaris muscles.

Author Keywords: POS system; EMG; electrogoniometer  相似文献   


14.
While previous studies have assessed changes in corticospinal excitability following voluntary contraction coupled with electrical stimulation (ES), we sought to examine, for the first time in the field, real-time changes in corticospinal excitability. We monitored motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and recorded the MEPs using a mechanomyogram, which is less susceptible to electrical artifacts. We assessed the MEPs at each level of muscle contraction of wrist flexion (0%, 5%, or 20% of maximum voluntary contraction) during voluntary wrist flexion (flexor carpi radialis (FCR) voluntary contraction), either with or without simultaneous low-frequency (10 Hz) ES of the median nerve that innervates the FCR. The stimulus intensity corresponded to 1.2× perception threshold. In the FCR, voluntary contraction with median nerve stimulation significantly increased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.01). In addition, corticospinal excitability was significantly modulated by the level of FCR voluntary contraction. In contrast, in the extensor carpi radialis (ECR), FCR voluntary contraction with median nerve stimulation significantly decreased corticospinal excitability compared with FCR voluntary contraction without median nerve stimulation (p<0.05). Thus, median nerve stimulation during FCR voluntary contraction induces reciprocal changes in cortical excitability in agonist and antagonist muscles. Finally we also showed that even mental imagery of FCR voluntary contraction with median nerve stimulation induced the same reciprocal changes in cortical excitability in agonist and antagonist muscles. Our results support the use of voluntary contraction coupled with ES in neurorehabilitation therapy for patients.  相似文献   

15.
The aim of this study was to evaluate the stabilisation of the wrist joint and the ad hoc wrist muscles activations during the two principal phases of the freestyle stroke. Seven male international swimmers performed a maximal semi-tethered power test. A swimming ergometer fixed on the start area of the pool was used to collect maximal power. The electromyography signal (EMG) of the right flexor carpi ulnaris (FCU) and extensor carpi ulnaris (ECU) was recorded with surface electrodes and processed using the integrated EMG (IEMG). Frontal and sagittal video views were digitised frame by frame to determine the wrist angle in the sagittal plane and the principal phases of the stroke (insweep, outsweep). Important stabilisation of the wrist and high antagonist muscle activity were observed during the insweep phase due to the great mechanical constraints. In outsweep, less stabilisation and lower antagonist activities were noted. Factors affecting coactivations in elementary movements, e.g. intensity and instability of the load, accuracy and economy of the movement were confirmed in complex aquatic movement.  相似文献   

16.
The mechanical effect of a muscle following agonist-to-antagonist tendon transfers does not always meet the surgeon's expectations. We tested the hypothesis that after flexor carpi ulnaris (FCU) to extensor carpi radialis (ECR) tendon transfer in the rat, the direction (flexion or extension) of the muscle's joint moment is dependent on joint angle. Five weeks after recovery from surgery (tendon transfer group) and in a control group, wrist angle-moment characteristics of selectively activated FCU muscle were assessed for progressive stages of dissection: 1) with minimally disrupted connective tissues, 2) after distal tenotomy, and 3) after maximal tendon and muscle belly dissection, but leaving blood supply and innervations intact. In addition, force transmission from active FCU onto the distal tendon of passive palmaris longus (PL) muscle (a wrist flexor) was assessed. Excitation of control FCU yielded flexion moments at all wrist angles tested. Tenotomy decreased peak FCU moment substantially (by 93%) but not fully. Only after maximal dissection, FCU wrist moment became negligible. The mechanical effect of transferred FCU was bidirectional: extension moments in flexed wrist positions and flexion moments in extended wrist positions. Tenotomy decreased peak extension moment (by 33%) and increased peak flexion moment of transferred FCU (by 41%). Following subsequent maximal FCU dissection, FCU moments decreased to near zero at all wrist angles tested. We confirmed that, after transfer of FCU towards a wrist extensor insertion, force can be transmitted from active FCU to the distal tendon of passive PL. We conclude that mechanical effects of a muscle after tendon transfer to an antagonistic site can be quite different from those predicted based solely on the sign of the new moment arm at the joint.  相似文献   

17.
The objective of this study was to investigate the surface electromyographic signals using moving approximate entropy from 20 healthy participants’ wrist muscles (flexor carpi ulnaris and flexor carpi radialis). The participants were required to voluntary performed wrist flexion/extension, co-contraction and isometric contraction. A moving data window of 200 values was applied to the data and a moving approximate entropy series was obtained from the analysis. The results demonstrate that there are distinct drops of the approximate entropy values at the start and end of a contraction, and high (less regularity) approximate entropy in the middle. Mean values of approximate entropy of 0.54 and 0.55 were found for the start of a contraction compared to 0.79 and 0.77 during the middle, for the flexor and extensor, respectively. At the end, there are values of 0.46 and 0.5, respectively.  相似文献   

18.
Maximum voluntary contractions (MVCs) are often used for the normalisation of electromyography data to enable comparison of signal patterns within and between study participants. Recommendations regarding the types of tasks that are needed to collect MVCs for the muscles of the forearm have been made, specifically advocating the use of resisted moment tasks to get better estimates of forearm MVCs. However, a protocol detailing which specific tasks to employ has yet to be published. Furthermore, the effects of limb dominance on the collection of MVCs have not been considered previously. Muscle activity was monitored while 23 participants performed nine isometric, resisted tasks. The tasks that are likely to elicit MVC in the flexor carpi ulnaris, flexor carpi radialis, flexor digitorum superficialis, extensor carpi ulnaris, extensor carpi radialis, extensor digitorum communis, and pronator teres were identified. Thus, targeted protocols can be designed to mitigate against fatigue. Hand dominance had limited effect, with differences being found only in the finger flexors and extensors (p< 0.03). Thus, use of the contralateral flexor digitorum superficialis and extensor digitorum communis muscles to obtain baselines for activation levels and patterns may not be appropriate.  相似文献   

19.
The aim of this study was to discriminate fatigue of upper limb muscles depending on the external load, through the development and analysis of a muscle fatigue index. Muscle fatigue is expressed by a fatigue index based on an amplitude parameter (calculated in the time domain) and a fatigue index based on a frequency parameter (a parameter calculated in the frequency domain). The fatigue index involves a regression function that describes changes in the EMG signal parameter, time elapsing before muscle fatigue and the probability of specific trends in changes in EMG parameters for the population under study.

The experimental study covered a group of 10 young men. During the study, they exerted force at a specific level and for a specific time in 12 load variants. During the study, EMG signals from four muscles of the upper limb were recorded (trapezius pars descendents, biceps brachii caput breve, extensor carpi radialis brevis, flexor carpi ulnaris). For each variant and for each examined muscles, the value of the fatigue index was calculated. Values of that index quantitatively expressed fatigue of a specific muscle in a specific load variant.

A statistical analysis indicated variation in the fatigue of the biceps brachii caput breve, extensor carpi radialis brevis, and flexor carpi ulnaris muscles depending on the external load (load variant) according to the task performed with the upper limb.

The study demonstrated usefulness of the fatigue index in expressing quantitatively muscle fatigue and in discriminating muscle fatigue depending on the external load.  相似文献   


20.
Vascular anatomy of the forearm muscles: a study of 50 dissections   总被引:1,自引:0,他引:1  
This anatomic study is based on 50 adult cadaver upper extremities. The general disposition of the forearm arteries and muscles and the main anatomic variations encountered are specified. Constant existence of an "anterior oblique artery" satellite of the pronator teres was established. The median nerve artery was principally dedicated to the flexor digitorum superficialis and participated appreciably in the constitution of palmar arches in only one case. A supernumerary intermedial radial muscle was found only in two cases. The abductor pollicis longus and extensor pollicis brevis appeared as a single muscular and vascular unit in 84 percent of cases. All the arteries destined for muscles were reckoned whatever their caliber might be. Despite its limitations, this study confirms the very great number of the forearm muscular pedicles. Each forearm contained an average of 264 muscular vascular pedicles. The systematization of the origins and destinations of the 13,158 muscular pedicles is described in a numbered manner for each of the 20 normal forearm muscles and for each of the 12 studied arterial segments. The pronator teres was likely to be supplied by all the anterior arteries of the upper limb. The flexor carpi radialis had one or two dominant pedicles originated from the recurrens ulnaris anterior, recurrens ulnaris, or ulnaris-interossea communis arteries, and many transversal branches originated from the radial artery. The flexor carpi ulnaris was supplied in its proximal third by the recurrens ulnaris posterior artery and in its distal two-thirds by many branches of ulnar artery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号