首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim of this study was to estimate how knee osteoarthritis (OA) affects the shape of femoral condyles by comparing the radiuses of condylar curves between healthy and OA knees. Seventeen female and five male patients with established diagnosis of knee OA were included in the study. Radiuses of medial and lateral condylar curves were calculated from the side view knee X-ray by original mathematical equation and compared to referent values of healthy knees, after adjusting to body height. The average radiuses of condylar curves were between 52.6 +/- 6.2 and 17.6 +/- 3.5 mm medially, and between 43.3 +/- 8.4 and 15.4 +/- 3.7 mm laterally for 0 degrees and 90 degrees femoral flexion contact points, respectively The OA knees had longer curve radiuses medially and laterally at 0 degrees, 10 degrees, and 20 degrees femoral flexion contact points in comparison to the healthy sample (P < 0.001; t-test). Our results suggest that the shape of the femoral condyles in OA knees is changed. It should be aware not only in researching of OA etiology, but also in designing of knee endoprostheses, in a manner to achieve better individual sizing.  相似文献   

2.
Little work has been done to examine the deep squat position (>130° sagittal knee flexion). In baseball and softball, catchers perform this squat an average of 146 times per nine-inning game. To alleviate some of the stress on their knees caused by this repetitive loading, some catchers wear foam knee supports.ObjectivesThis work quantifies the effects of knee support on lower-body joint kinematics and kinetics in the deep squat position.MethodsSubjects in this study performed the deep squat with no support, foam support, and instrumented support. In order to measure the force through the knee support, instrumented knee supports were designed and fabricated. We then developed an inverse dynamic model to incorporate the support loads. From the model, joint angles and moments were calculated for the three conditions.ResultsWith support there is a significant reduction in the sagittal moment at the knee of 43% on the dominant side and 63% on the non-dominant side compared to without support. These reductions are a result of the foam supports carrying approximately 20% of body weight on each side.ConclusionKnee support reduces the moment necessary to generate the deep squat position common to baseball catchers. Given the short moment arm of the patella femoral tendon, even small changes in moment can have a large effect in the tibial-femoral contact forces, particularly at deep squat angles. Reducing knee forces may be effective in decreasing incidence of osteochondritis dissecans.  相似文献   

3.
Few in-vitro studies have investigated changes in kinematics caused by total knee replacement (TKR) implantation. The advent of surgical navigation systems allows implant position to be measured accurately and the effects of alteration of TKR position and alignment investigated. A test rig and protocol were developed to compare the kinematics of TKR-implanted knees for different femoral component positions. The TKR was implanted and the component positions documented using a navigation system. The quadriceps was tensed and the knees were flexed and extended manually. Torques and drawer forces were applied to the tibia during knee flexion–extension, while recording the kinematics with the navigation system. The implant was removed and replaced on an intramedullary fixation that allowed proximal–distal, and internal–external rotation of the femoral component without conducting a repeated arthrotomy on the knee. The implant was repositioned using the navigation system to reproduce the previously achieved normally navigated position and the kinematics were recorded again. The recorded kinematics of the knee were not significantly different between both normal implantation and intramedullary remounting for tibial internal–external rotation, varus–valgus angulation, or posterior drawer, at any angle of knee flexion examined. Anterior drawer was increased approximately 2.5 mm across the range 20–35° knee flexion (p<0.05), but was otherwise not significantly different. This method of navigating implant components and of moving them within the closed knee (thus avoiding artefactual effects of repeated soft tissue manipulations) can now be used to quantify the effect on kinematics of alteration of the position of the femoral component.  相似文献   

4.
ObjectiveMuscle strengthening exercises have been shown to improve pain and function in adults with mild-to-moderate knee osteoarthritis, but individual response rates can vary greatly. Predicting individuals who respond and those who do not is important in developing a more efficient and effective model of care for knee osteoarthritis (OA). Therefore, the purpose of this study was to use pre-intervention gait kinematics and patient-reported outcome measures to predict post-intervention response to a 6-week hip strengthening exercise intervention in patients with mild-to-moderate knee OA.MethodsThirty-nine patients with mild-to-moderate knee osteoarthritis completed a 6-week hip-strengthening program and were subgrouped as Non-Responders, Low-Responders, or High-Responders following the intervention based on their change in Knee injury Osteoarthritis Outcome Score (KOOS). Predictors of responder subgroups were retrospectively determined from baseline patient-reported outcome measures and kinematic gait parameters in a discriminant analysis of principal components. A 3–4 year follow-up on 16 of the patients with knee OA was also done to examine long-term changes in these parameters.ResultsA unique combination of patient-reported outcome measures and kinematic factors was able to successfully subgroup patients with knee osteoarthritis with a cross-validated classification accuracy of 85.4%. Lower patient-reported function in daily living (ADL) scores and hip frontal plane kinematics during the loading response were most important in classifying High-Responders from other sub-groups, while a combination of hip, knee, ankle kinematics were used to classify Non-Responders from Low-Responders.ConclusionPatient-reported outcome measures and objective biomechanical gait data can be an effective method of predicting individual treatment success to an exercise intervention. Measuring gait kinematics, along with patient-reported outcome measures in a clinical setting can be useful in helping make evidence-based decisions regarding optimal treatment for patients with knee OA.  相似文献   

5.
6.
Squats are a common lower extremity task used in strength and conditioning, balance training, and rehabilitation. It is important to understand how slight alterations in lower extremity kinematics during a squat affect the internal joint loading of the knee. This study directly quantified tibiofemoral contact throughout the in vitro simulation of a bodyweight back squat performed two ways: a heel squat (knees in line with toes) and a toe squat (knees anterior to the toes) at peak knee flexion. Three cadaveric right lower extremities were instrumented and positioned into the University of Texas Joint Load Simulator. Kinematics, kinetics, and predicted muscle forces from a 20-year-old athletic male performing the two back squats were used as inputs for the in vitro simulations. The quantified tibiofemoral contact area, peak pressure, net force, and center of pressure location were significantly different between squat types (p > 0.05). Net contact area on the tibial plateau at peak knee flexion was significantly larger in the heel versus toe squat (599 ± 80 mm2 vs. 469 ± 125 mm2; p < 0.05). Peak lateral pressure was significantly higher in the heel versus toe squat (2.73 ± 0.54 MPa vs. 0.87 ± 0.56 MPa; p < 0.05). Results suggest the heel squat generates an even load distribution, which is less likely to affect joint degeneration. Future in vitro simulations should quantify the effects lower extremity kinematics, kinetics, and individual muscle forces have on tibiofemoral contact parameters during common athletic tasks.  相似文献   

7.
Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling – spherical, hinge, degree-of-freedom coupling curves and parallel mechanism – against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.  相似文献   

8.
The aim of this study was to quantify the tibio-femoral contact point (CP) locations in healthy and osteoarthritic (OA) subjects during a weight-bearing squat using stand-alone biplanar X-ray images.Ten healthy and 9 severe OA subjects performed quasi-static squats. Bi-planar X-ray images were recorded at 0°, 15°, 30°, 45°, and 70° of knee flexion. A reconstruction/registration process was used to create 3D models of tibia, fibula, and femur from bi-planar X-rays and to measure their positions at each posture. A weighted centroid of proximity algorithm was used to calculate the tibio-femoral CP locations. The accuracy of the reconstruction/registration process in measuring the quasi-static kinematics and the contact parameters was evaluated in a validation study.The quasi-static kinematics data revealed that in OA knees, adduction angles were greater (p<0.01), and the femur was located more medially relative to the tibia (p<0.01). Similarly, the average CP locations on the medial and lateral tibial plateaus of the OA patients were shifted (6.5±0.7 mm; p<0.01) and (9.6±3.1 mm; p<0.01) medially compared to the healthy group. From 0° to 70° flexion, CPs moved 8.1±5.3 mm and 8.9±5.3 mm posteriorly on the medial and lateral plateaus of healthy knees; while in OA joints CPs moved 10.1±8.4 mm and 3.6±2.8 mm posteriorly. The average minimum tibio-femoral bone-to-bone distances of the OA joints were lower in both compartments (p<0.01).The CPs in the OA joints were located more medially and displayed a higher ratio of medial to lateral posterior translations compared to healthy joints.  相似文献   

9.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

10.
It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring) is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec) and total work (180°/sec) of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037) and hamstring (r = 0.426, P = 0.045) muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041). Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032). The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle.  相似文献   

11.
The serum fraction of platelet-rich fibrin (hyperacute serum) has been shown to improve cartilage cell proliferation in in vitro osteoarthritic knee joint models. We hypothesize that hyperacute serum may be a potential regenerative therapeutic for osteoarthritic knees. In this study, the cytokine milieu at the synovial fluid of osteoarthritic knee joints exposed to hyperacute serum intraarticular injections was investigated. Patients with knee osteoarthritis received three injections of autologous hyperacute serum; synovial fluid was harvested before each injection and clinical monitoring was followed-up for 6 months. Forty osteoarthritic-related cytokines, growth factors and structural proteins from synovial fluid were quantified and analysed by Multivariate Factor Analysis. Hyperacute serum provided symptomatic relief regarding pain and joint stability for OA patients. Both patients “with” and “without effusion knees” had improved VAS, KOOS and Lysholm-Tegner scores 6 months after of hyperacute serum treatment. Synovial fluid analysis revealed two main clusters of proteins reacting together as a group, showing strong and significant correlations with their fluctuation patterns after hyperacute serum treatment. In conclusion, hyperacute serum has a positive effect in alleviating symptoms of osteoarthritic knees. Moreover, identified protein clusters may allow the prediction of protein expression, reducing the number of investigated proteins in future studies.  相似文献   

12.
The kinematic magnetic resonance imaging technique has been developed to provide a functional examination of the knee. Technical limitations require this examination to be performed in supine position, and the knee motion is represented by an assembly of static positions at different knee angles. However, the main knee function is to support the body weight and perform continuous motion, e.g. parallel squat. Our study quantified the knee kinematics of 20 healthy subjects in different motion conditions (finite and continuous) and in different mechanical conditions (continuous unloaded and continuous loaded). We evaluated the angular and localisation difference of a finite helical axis of the knee motion for parallel squat, continuous knee extension in supine position and the finite set of knee extension in supine position. We found large inter-individual dispersion. The majority of subjects had equivalent knee kinematics between continuous knee extension and the finite set of knee extension in supine position, but not between continuous knee extension in supine position and the parallel squat. Therefore, results from a functional examination of a finite set of knee extensions in supine position do not represent the knee motion in a parallel squat. Our results suggest that functional examination of the knee from magnetic resonance imaging do not necessarily reflect the physiological kinematics of the knee. Further investigation should focus on a new magnetic resonance imaging acquisition protocol that allows image acquisition during weight bearing or includes a special device which reproduces the loaded condition.  相似文献   

13.
目的:研究膝骨性关节炎(knee osteoarthritis,KOA)患者行单侧全膝关节置换术手术前后膝关节皮温、血清指标的变化规律以及与膝关节功能恢复之间相关性。方法:将2016年9月-2017年3月在我院行单侧全膝关节置换术且术后未发生假体周围感染的患者作为研究对象,测量并记录基本信息、术前及术后膝关节皮温、血清指标及膝关节功能评分,并进行统计学分析。结果:本研究共收集病例65例,随访时间为6个月。双膝皮温、双膝皮温差于术后第5天达到峰值,PCT、CRP、ESR均于术后第3天达到峰值,IL-6、WBC于术后第1天达到峰值,HGB下降至最低水平为术后5-7天。患者非手术侧膝关节皮温于术后30天恢复至术前水平,而手术侧膝关节皮温及双膝皮温差直至术后6个月仍未恢复至术前水平;PCT、IL-6、CRP于术后60天恢复至术前水平,ESR于术后90天恢复至术前水平,WBC于术后15天恢复至术前水平。结论:KOA患者TKA术后双膝皮温差直至术后6月仍高于术前水平,而研究中的各项血清指标均于术后3月内恢复至术前水平。  相似文献   

14.
Notch pathway plays a pivotal role in cell fate determination. There is much interest surrounding its therapeutic potential, in osteoarthritis, but the expression profile of Notch-related molecules, as well as their relation with cartilage pathological parameters, remains unclear. The purpose of our study is to analyze the expression pattern of Notch family members, type II and type I collagen, in normal (healthy) and osteoarthritic human knee cartilage. Osteoarthritic cartilages were obtained from 3 patients undergoing a total knee replacement. Macroscopically normal cartilage was dissected from 3 human knees at the time of autopsy or surgery. Immunohistochemical staining was performed using Notch1,2,3 and 4, Delta, Jagged, type II collagen and type I collagen antibodies. In healthy cartilage, type II collagen was abundantly expressed while type I was absent. This latter increased proportionally to the osteoarthritic grade. Type II collagen expression remained intense in osteoarthritic cartilage. In healthy cartilage as well as in cartilage with minor lesions, Notch family member's proteins were not or just weakly expressed at the surface and in the cells. However, Notch molecules were over-expressed in osteoarthritic cartilage compared to healthy one. This expression pattern was different according to the cartilage zone and the severity of OA. Our data suggest that Notch signaling is activated in osteoarthritic cartilage, compared to healthy cartilage, with a much more abundant expression in the most damaged areas.  相似文献   

15.
Knee joint kinematics is the focus of a significant amount of experimental study for the purpose of knee prosthesis design and for testing the wear of current and prospective bearing materials. This study reports the wear assessment of a series of 94 explanted tibial bearings of various designs and manufacturers and focuses on the extent to which clinical wear is symmetric in the medial-lateral aspect, or is indicative of a systematic asymmetry that would be informative to the design and testing of knee prostheses or surgical practice. Wear assessment of the series of retrievals indicates that, statistically, there was more clinical wear on the medial side. Patterns of wear varied greatly among individual knees; a majority showed very similar extents of wear on the medial and lateral sides, however there were cases with significantly more wear on one condylar articulation than the other. Evidence of edge loading, whereby the femoral component articulates at the margin of the tibial bearing, was common. It was seen most frequently in the central zone of the medial condylar area, and, like the overall wear, edge loading was significantly more frequent on the medial side of bearings. Total bearing wear was seen to generally increase with time over the 208 months of in vivo duration covered by the retrievals in the study. The medial-lateral asymmetry of the wear does not appear to be significantly dependent on duration, however.  相似文献   

16.
ObjectiveTo assess the use of Global Positioning System receiver (GPS) derived performance measures for differentiating between: 1) different outdoor activities in healthy dogs; 2) healthy dogs and those with osteoarthritis; 3) osteoarthritic dogs before and after treatment with non-steroidal anti-inflammatory analgesia.DesignProspective study.AnimalsTen healthy dogs and seven dogs with osteoarthritis of the elbow joint (OA dogs).ProcedureHealthy dogs were walked on a standard route on-lead, off-lead and subjected to playing activity (chasing a ball) whilst wearing a GPS collar. Each dog was walked for five consecutive days. Dogs with OA were subjected to a single off-lead walk whilst wearing a GPS collar, and then administered oral Carprofen analgesia daily for two weeks. OA dogs were then subjected to the same walk, again wearing a GPS collar.ResultsGPS derived measures of physical performance could differentiate between on-lead activity, off-lead activity and playing activity in healthy dogs, and between healthy dogs and OA dogs. Variation in the performance measures analysed was greater between individual dogs than for individual dogs on different days. Performance measures could differentiate healthy dogs from OA dogs. OA Dogs treated with Carprofen analgesia showed improvements in their physical performance, which returned to values indistinguishable from those of healthy dogs on nearly all the measures assessed.

Conclusions and Clinical Relevance

GPS derived measures of physical performance in dogs are objective, easy to quantify, and can be used to gauge the effects of disease and success of clinical treatments. Specific stimuli can be used to modulate physical performance beyond the self-governed boundaries that dogs will naturally express when allowed to exercise freely without stimulation.  相似文献   

17.
Some recommendations suggest keeping the shank as vertical as possible during the barbell squat, thus keeping the knees from moving past the toes. This study examined joint kinetics occurring when forward displacement of the knees is restricted vs. when such movement is not restricted. Seven weight-trained men (mean +/- SD; age = 27.9 +/- 5.2 years) were videotaped while performing 2 variations of parallel barbell squats (barbell load = body weight). Either the knees were permitted to move anteriorly past the toes (unrestricted) or a wooden barrier prevented the knees from moving anteriorly past the toes (restricted). Differences resulted between static knee and hip torques for both types of squat as well as when both squat variations were compared with each other (p < 0.05). For the unrestricted squat, knee torque (N.m; mean +/- SD) = 150.1 +/- 50.8 and hip torque = 28.2 +/- 65.0. For the restricted squat, knee torque = 117.3 +/- 34.2 and hip torque = 302.7 +/- 71.2. Restricted squats also produced more anterior lean of the trunk and shank and a greater internal angle at the knees and ankles. The squat technique used can affect the distribution of forces between the knees and hips and on the kinematic properties of the exercise. PRACTICAL APPLICATIONS: Although restricting forward movement of the knees may minimize stress on the knees, it is likely that forces are inappropriately transferred to the hips and low-back region. Thus, appropriate joint loading during this exercise may require the knees to move slightly past the toes.  相似文献   

18.
Side-cutting is commonly used to evaluate knee joint kinematics and kinetics in the context of anterior cruciate ligament injury risk. Many existing side-cutting studies fail to clearly define the orientation of the femoral frame and the knee axis, making comparisons between studies difficult. A femoral frame constructed using the ISB or existing functional methods does not necessarily have a medial-lateral axis that is aligned with the axis of the knee. A functional frame that directly aligns with the medial-lateral knee axis was compared to the ISB anatomical frame and the Besier functional frame (Besier et al., 2003) to determine whether the chosen frame would affect the interpretation of side-cutting data. Kinematic and kinetic variables were calculated during three side-cutting manoeuvres of 28 subjects. Differences in mean frame orientation were correlated with the differences in mean knee angle during side-cutting. The differences between the ISB anatomical frame and the functional frames were significantly correlated with the differences in superior-inferior and medial-lateral axis orientations. Coefficients of multiple correlation showed a good to high (CMCs≥0.74) similarity between frames for knee angles and moments. Using a femoral anatomical frame rather than a functional frame most significantly affected offset rather than cross talk in knee angles and moments measured during side-cutting. There were no significant differences in offset or cross talk between the two functional methods. Maximum differences of <4° for frontal plane knee angle requires cautious interpretation but differences <8Nm for knee joint moment were not thought to affect the interpretation of side-cutting data when comparing between studies.  相似文献   

19.
Organization of the collagen network is known to be different in healthy, osteoarthritic and repaired cartilage. The aim of the study was to investigate how the structure and properties of collagen network of cartilage modulate stresses in a knee joint with osteoarthritis or cartilage repair. Magnetic resonance imaging (MRI) at 1.5 T was conducted for a knee joint of a male subject. Articular cartilage and menisci in the knee joint were segmented, and a finite element mesh was constructed based on the two-dimensional section in sagittal projection. Then, the knee joint stresses were simulated under impact loads by implementing the structure and properties of healthy, osteoarthritic and repaired cartilage in the models. During the progression of osteoarthritis, characterized especially by the progressive increase in the collagen fibrillation from the superficial to the deeper layers, the stresses were reduced in the superficial zone of cartilage, while they were increased in and under menisci. Increased fibril network stiffness of repair tissue with randomly organized collagen fibril network reduced the peak stresses in the adjacent tissue and strains at the repair–adjacent cartilage interface. High collagen fibril strains were indicative of stress concentration areas in osteoarthritic and repaired cartilage. The collagen network orientation and stiffness controlled the stress distributions in healthy, osteoarthritic and repaired cartilage. The evaluation of articular cartilage function using clinical MRI and biomechanical modeling could enable noninvasive estimation of osteoarthritis progression and monitoring of cartilage repair. This study presents a step toward those goals.  相似文献   

20.
The aim of this study is to mathematically approximate the shape of the femoral articulating line and compare radiuses of condylar curves within and between males and females. Ten male and ten female participants were included in the study. Radiuses of medial and lateral condylar curves were calculated from the side view knee X-ray by original mathematical equation. Average radiuses of condylar curves were between 4.5 and 1.7 cm medially, and between 3.2 and 1.8 cm laterally, for 0 degrees and 90 degrees flexion contact point respectively. Males had longer curve radiuses of both condyles (p < 0.05). Differences turned out to be statistically insignificant after adjusting to body height. Even small changes in the joint geometry during lifetime could make a joint susceptible to osteoarthritis or injuries. Approximation of the radiuses of femoral condyle curves is a useful method in anthropometric, radiological and virtual calculations of the knee geometry, and other ellipsoidal structures in human body, like wrist, scull segments, dental arches, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号