共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the lower extremity torque's active and passive features during the walk-to-run gait transition with continuously increased walking speed. Fourteen volunteers participated in the experiment. Kinematic and kinetic data were collected synchronously. Five strides leading up the gait transition were examined. Peaks of the passive (e.g., contact) and active (e.g., generalized muscle torques), along with net joint torque, and time to peak torques exhibited significant differences at the last stride before gait transition, compared to the first four strides, at the ankle, knee, and hip joints, respectively. Selected peak joint active and passive torques showed significant and opposite trends at critical events within a stride cycle: such ankle joint right after heel-contact, knee joint during weight acceptance, and both hip and knee joints right before toe-off. The magnitude and the corresponding time to active and passive peak torque changed in a nonlinear pattern before the transition from walk to run. The lower extremity segment-interaction during gait transition appeared to be an active reorganization exemplified by the interaction between the lower extremity's active and passive torque components. 相似文献
2.
Veronica Cimolin Claudia Condoluci Pier Francesco Costici Manuela Galli 《Computer methods in biomechanics and biomedical engineering》2019,22(1):94-99
A new summary index for kinetic gait data is proposed (Gait Kinetic Index - GKI), BASED on six kinetic selected variables: hip, knee and ankle moments and powers on the sagittal plane. This method was applied on a control group (CG) of 18 subjects and on 57 patients with diplegic Cerebral Palsy (CP). CP showed statistical different GKI value in comparison with CG. The same is for the sub GKI with the exclusion of GKI Knee Power. The GKI seems to be a promising tool useful to measure extensively the gait pathology taking into consideration kinetic aspects of gait pattern. 相似文献
3.
Sideways movement at a wide variety of speeds is required in daily life and sports. The purpose of this study was to identify the characteristics of asymmetry in power output between lower limbs during sideways gait patterns. Seven healthy men performed steady-state sideways locomotion at various speeds. The mechanical external power of each limb was calculated and decomposed to the lateral and vertical components by the center of mass velocity and ground reaction force. We acquired data from 126 steps of sideways walking at 0.44–1.21 m/s, and from 41 steps of sideways galloping at 1.04–3.00 m/s. The results showed asymmetric power production between the limbs during sideways locomotion. During sideways walking, the trailing limb predominantly produced positive external power and the leading limb produced predominantly negative external power, and these amplitudes increased with step speed. In contrast, during sideways galloping, negative and subsequent positive power production was observed in both limbs. These differences in asymmetric interlimb role-sharing were mainly due to the vertical component. During sideways galloping, the trailing limb absorbs vertical power produced by the leading limb due to the longer flight time. This characteristic of vertical power production in the trailing limb may explain the presence of a double-support phase, which is not observed during forward running, even at high speeds. Our results will help to elucidate the asymmetric movements of the limbs in lateral directions at various speeds. 相似文献
4.
Simple 2D models of walking often approximate the human body to multi-link dynamic systems, where body segments are represented by rigid links connected by frictionless hinge joints. Performing forward dynamics on the equations of motion (EOM) of these systems can be used to simulate their movement. However, deriving these equations can be time consuming. Using Lagrangian mechanics, a generalised formulation for the EOM of n-link open-loop chains is derived. This can be used for single support walking models. This has an advantage over Newton–Euler mechanics in that it is independent of coordinate system and prior knowledge of the ground reaction force (GRF) is not required. Alternative strategies, such as optimisation algorithms, can be used to estimate joint activation and simulate motion. The application of Lagrange multipliers, to enforce motion constraints, is used to adapt this general formulation for application to closed-loop chains. This can be used for double support walking models. Finally, inverse dynamics are used to calculate the GRF for these general n-link chains. The necessary constraint forces to maintain a closed-loop chain, calculated from the Lagrange multipliers, are one solution to the indeterminate problem of GRF distribution in double support models. An example of this method’s application is given, whereby an optimiser estimates the joint moments by tracking kinematic data. 相似文献
6.
This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. 相似文献
7.
Daichi Yamashita Masahiro Shinya Keisuke Fujii Shingo Oda Motoki Kouzaki 《Journal of electromyography and kinesiology》2013,23(6):1480-1484
The purpose of this study is to examine the characteristics of gait patterns in human preferred sideways locomotion at increasing speeds. Fifteen healthy young males were asked to step sideways on a treadmill at various speeds of 1.3–6.1 km/h. The times of foot contact and take-off were analyzed. Three gait patterns were observed. At slow speeds, all of the subjects performed a walk-like pattern. When the treadmill speed exceeded approximately 3.5 km/h, the subjects preferred gait patterns with a flight phase. Most of the subjects performed an asymmetric gait pattern that was similar to a forward gallop, whereas only two out of fifteen subjects performed a run-like gait pattern. Because the left and right legs are positioned along the movement direction, it might be more efficient to divide roles between the leading and trailing limbs at high speeds: the leading limb functions to produces breaking and vertical force, and the trailing limb mainly absorbs the impact of foot contact and generates propulsive forces. 相似文献
8.
Monirosadat Sadati Nader Taheri Qazvini Ramaswamy Krishnan Chan Young Park Jeffrey J. Fredberg 《Differentiation; research in biological diversity》2013
Our traditional physical picture holds with the intuitive notion that each individual cell comprising the cellular collective senses signals or gradients and then mobilizes physical forces in response. Those forces, in turn, drive local cellular motions from which collective cellular migrations emerge. Although it does not account for spontaneous noisy fluctuations that can be quite large, the tacit assumption has been one of linear causality in which systematic local motions, on average, are the shadow of local forces, and these local forces are the shadow of the local signals. New lines of evidence now suggest a rather different physical picture in which dominant mechanical events may not be local, the cascade of mechanical causality may be not so linear, and, surprisingly, the fluctuations may not be noise as much as they are an essential feature of mechanism. Here we argue for a novel synthesis in which fluctuations and non-local cooperative events that typify the cellular collective might be illuminated by the unifying concept of cell jamming. Jamming has the potential to pull together diverse factors that are already known to contribute but previously had been considered for the most part as acting separately and independently. These include cellular crowding, intercellular force transmission, cadherin-dependent cell–cell adhesion, integrin-dependent cell–substrate adhesion, myosin-dependent motile force and contractility, actin-dependent deformability, proliferation, compression and stretch. 相似文献
9.
Two discrete population models, one with stochasticity in the carrying capacity and one with stochasticity in the per capita growth rate, are investigated. Conditions under which the corresponding Markov processes are null recurrent and positively recurrent are derived. 相似文献
10.
Human joint torques during gait are usually computed using inverse dynamics. This method requires a skeletal model, kinematics and measured ground reaction forces and moments (GRFM). Measuring GRFM is however only possible in a controlled environment. This paper introduces a probabilistic method based on probabilistic principal component analysis to estimate the joint torques for healthy gait without measured GRFM. A gait dataset of 23 subjects was obtained containing kinematics, measured GRFM and joint torques from inverse dynamics in order to obtain a probabilistic model. This model was then used to estimate the joint torques of other subjects without measured GRFM. Only kinematics, a skeletal model and timing of gait events are needed. Estimation only takes 0.28 ms per time instant. Using cross-validation, the resulting root mean square estimation errors for the lower-limb joint torques are found to be approximately 0.1 Nm/kg, which is 6–18% of the range of the ground truth joint torques. Estimated joint torque and GRFM errors are up to two times smaller than model-based state-of-the-art methods. Model-free artificial neural networks can achieve lower errors than our method, but are less repeatable, do not contain uncertainty information on the estimates and are difficult to use in situations which are not in the learning set. In contrast, our method performs well in a new situation where the walking speed is higher than in the learning dataset. The method can for example be used to estimate the kinetics during overground walking without force plates, during treadmill walking without (separate) force plates and during ambulatory measurements. 相似文献
11.
《仿生工程学报(英文版)》2024,21(1)
Quadruped animals in the nature realize high energy efficiency locomotion by automatically changing their gait at different speeds.Inspired by this character,an efficient adaptive diagonal gait locomotion controller is designed for quadruped robot.A unique gait planning method is proposed in this paper.As the speed of robot varies,the gait cycle time and the proportion of stance and swing phase of each leg are adjusted to form a variety of gaits.The optimal joint torque is calculated by the controller combined with Virtual Model Control(VMC)and Whole-Body Control(WBC)to realize the desired motion.The gait and step frequency of the robot can automatically adapt to the change of speed.Several experiments are done with a quadruped robot made by our laboratory to verify that the gait can change automatically from slow-trotting to flying-trot during the period when speed is from 0 to 4 m/s.The ratio of swing phase is from less than 0.5 to more than 0.5 to realize the running motion with four feet off the ground.Experiments have shown that the controller can indeed consume less energy when robot runs at a wide range of speeds comparing to the basic controller. 相似文献
12.
Gaits can be defined based upon specific interlimb coordination patterns characteristic of a limited range of speeds, with one or more defining variables changing discontinuously at a transition. With changing speed, horses perform a repertoire of gaits (walk, trot, canter and gallop), with transitions between them. Knowledge of the series of kinematic events necessary to realize a gait is essential for understanding the proximate mechanisms as well as the control underlying gait transitions. We studied the kinematics of the actual transition from trot to canter in miniature horses. The kinematics were characterized at three different levels: the whole-body level, the spatio-temporal level of the foot falls and the level of basic limb kinematics. This concept represents a hierarchy: the horse's center of mass (COM) moves forward by means of the coordinated action of the limbs and changes in the latter are the result of alterations in the basic limb kinematics. Early and short placement of the fore limb was observed before the dissociation of the footfalls of one of the diagonal limb pairs when entering the canter. Dissociation coincided with increased amplitude and wavelength of the oscillations of the trunk in the sagittal plane. The increased amplitude cannot be explained solely by the passive effects of acceleration or by neck and head movements which are inconsistent with the timing of the transition. We propose that the transition is initiated by the fore limb followed by subsequent changes in the hind limbs in a series of kinematic events that take about 2.5 strides to complete. 相似文献
13.
Michael E. Starzak 《Journal of biological physics》1997,23(3):133-142
Thallous ion in gramicidin channels displays the anomalous molefraction effect and other behavior that suggests its permeationmechanism might be more complicated than the mechanisms for sodiumor potassium ion permeation. The permeation is modeled by eithermultistate first order kinetics where the number of states and therate constants are modified to fit the data or an ion displacementmechanism that requires higher order rate terms. Although the twoclasses of mechanism are difficult to distinguish usingcurrent-voltage data, the two classes give different responses toa modulated transmembrane potential with frequency comparable tothe rate constants for intrachannel ion transitions. Themultistate first order kinetics give currents only at themodulation frequency. Information is transmitted in the phase andamplitude of the observed current. The non-linear iondisplacement mechanism produces harmonic frequencies. A detailedspectral analysis then distinguishes the two classes of mechanismand provides a range of frequency and phase data that permitsdetermination of the appropriate rate constants. 相似文献
14.
Nishii J 《Journal of theoretical biology》2006,238(3):636-645
Legged locomotion requires the determination of a number of parameters such as stride period, stride length, order of leg movements, leg trajectory, etc. How are these parameters determined? It has been reported that the locomotor patterns of many legged animals exhibit common characteristics, which suggests that there exists a basic strategy for legged locomotion. In this study we derive an equation to estimate the cost of transport for legged locomotion and examine a criterion of the minimization of the transport cost as a candidate of the strategy. The obtained optimal locomotor pattern that minimizes the cost suitably represents many characteristics of the pattern observed in legged animals. This suggests that the locomotor pattern of legged animals is well optimized with regard to the energetic cost. The result also suggests that the existence of specific gait patterns and the phase transition between them could be the result due to optimization; they are induced by the change in the distribution of ground reaction forces for each leg during locomotion. 相似文献
15.
The first investigation of the dynamics of a redox transition of an electron-transfer enzyme by time-resolved resonance Raman spectroscopy in combination with pulse-radiolytical reduction is described by an application to cytochrome c. A long-lived transient state is observed upon reduction of the alkaline form of cytochrome c as a distinct frequency shift of one resonance Raman band. From the frequency in the stable oxidized state, 1567 cm?1, this particular resonance Raman band shifts within less than 1 μs to 1533 cm?1 in the transient reduced state, which has a lifetime longer than 20 ms but shorter than a few seconds. Finally, in the stable reduced state, this band is located at 1547 cm?1. According to a previous normal coordinate analysis, this resonance Raman band can be assigned predominantly to a stretching mode of the outermost C-C bonds in the four pyrrole rings of porphyrin. This vibrational mode is influenced by the protein most directly through the covalent thioether linkages of two cysteines to porphyrin. We interpret the long lifetime of the transient state as due to the slow return of Met-80 as sixth ligand to the heme iron upon reduction of the alkaline form of cytochrome c. 相似文献
16.
F. Cros P. Flaud Ph. Dantan 《Computer methods in biomechanics and biomedical engineering》2013,16(6):421-429
The venous network in the lower limbs is composed of a considerable number of confluent junctions. Each of these singularities introduces some blood flow disturbances. Each physiological junction is unique, in terms of its geometry as well as the blood flow rate. In order to account for this great variability, we developed a numerical model based on the use of the N3S code (a software package for solving Navier-Stokes equations). To test the validity of the model, one of the numerical simulations is compared with the data obtained in the corresponding experimental configuration. The velocity measurements were carried out with an ultrasonic pulsed Doppler velocimeter. We also measured pressure differences using differential sensors. The numerical computations were then used to obtain the values of the flow variables at any point, with various geometrical and flow configurations. As far as the velocity field is concerned, a very marked three-dimensional pattern with swirls was observed. The pressure evolution was also strongly disturbed, with a non-linear decrease. All these data indicate that confluence effects cannot be neglected when evaluating pressure decreases. With a tool of this kind, it is possible to accurately predict the disturbances associated with any geometrical configuration or any flow rate. 相似文献
17.
Phillip C. Desrochers Daekyoo Kim Laura Keegan Simone V. Gill 《Journal of musculoskeletal & neuronal interactions》2021,21(3):335
Objectives:Obesity is a significant global health concern that involves motor impairment, including deficits in gait and balance. A simple tool would be useful to capture gait and balance impairment in obesity. We assessed whether the Functional Gait Assessment (FGA) captures impairment in individuals with obese BMI (≥30 kg/m2) and whether impairment was related to spatiotemporal gait parameters.Methods:Fourteen individuals with obese BMI and twenty individuals of normal weight underwent the FGA. Spatiotemporal gait parameters were collected while participants walked on a pressure sensitive walkway under five conditions: pre-baseline (flat ground walking), crossing small, medium, and high obstacles, and final-baseline (flat ground walking).Results:Individuals with obesity had lower scores on the FGA (p≤0.001) and showed less efficient spatiotemporal gait parameters than healthy controls, particularly when crossing over obstacles (all ps≤0.05). For participants with obesity, lower FGA scores were associated with decreased gait velocity, but only during obstacle crossing (p≤0.05).Conclusions:The FGA may be a useful tool to capture gait impairment in populations with obesity. Obstacles may help reveal meaningful gait impairments. To our knowledge, this is the first study to examine the FGA in individuals with obesity, and represents a proof-of-concept that motivates further validation studies. 相似文献
18.
19.
J A Vilensky 《American journal of physical anthropology》1983,61(2):255-265
The gait of a juvenile rhesus monkey as he walked, ran, underwent a run-gallop transition, and galloped on a motor-driven treadmill is described. Additionally, gait data for an adult animal during walking are also presented. Footfall sequences, stride durations, and absolute and relative swing and stance durations for all four limbs are reported, and, where possible, correlated with speed. Furthermore, support patterns and delays between footfalls are presented as a function of speed. The analysis revealed many similarities with previous studies on both primates and other species, but additionally demonstrated that the fore- and hindlimbs may not relate to speed in an identical manner and that galloping is initiated asymmetrically by a single diagonal couplet. The implications of these results in terms of understanding the neural mechanisms by which quadrupeds increase speed are discussed. 相似文献
20.
In this paper we discuss an approach, using methods of non-linear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. The method involves a comparison of recordings taken from electrodes adjacent to and remote from the site of ictal onset. In particular, we define a non-linear quantity which we call 'marginal predictability'. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. 相似文献