首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The development of methods that can identify athlete-specific optimum sports techniques—arguably the holy grail of sports biomechanics—is one of the greatest challenges for researchers in the field. This ‘perspectives article’ critically examines, from a dynamical systems theoretical standpoint, the claim that athlete-specific optimum sports techniques can be identified through biomechanical optimisation modelling. To identify athlete-specific optimum sports techniques, dynamical systems theory suggests that a representative set of organismic constraints, along with their non-linear characteristics, needs to be identified and incorporated into the mathematical model of the athlete. However, whether the athlete will be able to adopt, and reliably reproduce, his/her predicted optimum technique will largely be dependent on his/her intrinsic dynamics. If the attractor valley corresponding to the existing technique is deep, or if the attractor valleys corresponding to the existing technique and the predicted optimum technique are in different topographical regions of the dynamic landscape, technical modifications may be challenging or impossible to reliably implement even after extended practice. The attractor layout defining the intrinsic dynamics of the athlete, therefore, needs to be determined to establish the likelihood of the predicted optimum technique being reliably attainable by the athlete. Given the limited set of organismic constraints typically used in mathematical models of athletes, combined with the methodological challenges associated with mapping the attractor layout of an athlete, it seems unlikely that athlete-specific optimum sports techniques will be identifiable through biomechanical optimisation modelling for the majority of sports skills in the near future.  相似文献   

2.

Introduction

Sudden cardiac arrest (SCA) in athletes is an unexpected life-threatening event, which is often not recognised early and cardiopulmonary resuscitation (CPR) is not always initiated immediately. We describe key features to rapidly recognise non-traumatic SCA in athletes during sports activity.

Methods

We reviewed videos and images of athletes suffering from non-traumatic SCA during sports activity. We searched Google images, Google videos and YouTube.com using the keywords ‘sudden cardiac death athlete’ and ‘resuscitation athlete’. We analysed (1) the athlete’s performance before syncope, (2) the athlete’s performance at the start of syncope, (3) the position of the body, and (4) the athlete’s facial expressions before CPR. We analysed our data by describing these four features to answer our research question.

Results

We analysed the sequence of events in six well-known soccer players in whom a camera-witnessed non-traumatic SCA occurred during their athletic activity. All six athletes showed no changes before syncope. Four became unstable while standing and unexpectedly collapsed falling on their back. Two suddenly ‘dropped dead’ and fell face down. All six had their eyes wide open with a fixed gaze and fixed pupils.

Conclusions

Sudden unexpected loss of consciousness in an athlete in action and a fixed gaze eye position are key features of SCA. Immediate cardiac massage should follow. The described features to immediately recognise SCA in athletes during sports activity should be taught to everyone involved in athletic activity leading to earlier recognition of SCA followed by earlier CPR.
  相似文献   

3.
The hypothesis that the sum of the absolute changes in mechanical energy (internal work) is correlated with the muscular mechanical energy expenditure (MMEE) was tested using two elliptical chainrings, one that reduced and one that increased the internal work (compared to circular). Upper and lower bounds were put on the extra MMEE (work done by net joint torques in excess of the external work) with respect to the effect of intercompensation between joint torques due to biarticular muscles. This was done by having two measures of MMEE, one that allowed no intercompensation and one that allowed complete intercompensation between joints spanned by biarticular muscles. Energy analysis showed no correlation between internal work and the two measures of MMEE. When compared to circular, the chainring that reduced internal work increased MMEE, and phases of increased crank velocity associated with the elliptical shape resulted in increased power absorbed by the upstroke leg as it was accelerated against gravity. The resulting negative work necessitated additional positive work. Thus, the hypothesis that the internal work is correlated with MMEE was found to be invalid, and the total mechanical work done cannot be estimated by summing the internal and external work. Changes in the dynamics of cycling caused by a non-circular chainring may affect performance and must be considered during the non-circular chainring design process.  相似文献   

4.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

5.
This study tested the hypothesis that skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass despite equivalent changes in total mechanical energy. Thirteen adults ran on a 10° decline and incline surface at a constant average velocity. Three-dimensional (3D) joint powers were calculated from ground force and 3D kinematic data using inverse dynamics. Joint work was calculated from the power curves and assumed to be due to skeletal muscle–tendon actuators. External work was calculated from the kinematics of the pelvis through the gait cycle. Incline vs. decline running was characterized with smaller ground forces that operated over longer lever arms causing larger joint torques and work from these torques. Total lower extremity joint work was 28% greater in incline vs. decline running (1.32 vs. −1.03 J/kg m, p<0.001). Total lower extremity joint work comprised 86% and 71% of the total external work in incline (1.53 J/kg m) and decline running (−1.45 J/kg m), which themselves were not significantly different (p<0.180). We conjectured that the larger ground forces in decline vs. incline running caused larger accelerations of all body tissues and initiated a greater energy-dissipating response in these tissues compared to their response in incline running. The runners actively lowered themselves less during decline stance and descended farther as projectiles than they lifted themselves during incline stance and ascended as projectiles. These data indicated that despite larger ground forces in decline running, the reduced displacement during downhill stance phases limited the work done by muscle contraction in decline compared to incline running.  相似文献   

6.
Aquatic exercises are widely implemented into rehabilitation programs. However, both evaluating their mechanical demands on the musculoskeletal system and designing protocols to provide progressive loading are difficult tasks. This study reports for the first time shoulder joint kinetics and dynamics during underwater forward arm elevation performed at speeds ranging from 22.5 to 90°/s. Net joint moments projected onto anatomical axes of rotation, joint power, and joint work were calculated in 18 participants through a novel approach coupling numerical fluid flow simulations and inverse dynamics. Joint dynamics was revealed from the 3D angle between the joint moment and angular velocity vectors, identifying three main functions—propulsion, stabilization, and resistance. Speeds <30°/s necessitated little to no power at all, whereas peaks about 0.20 W⋅kg−1 were seen at 90°/s. As speed increased, peak moments were up to 61 × higher at 90 than at 22.5°/s, (1.82 ± 0.12%BW⋅AL vs 0.03 ± 0.01%BW⋅AL, P < 0.038). This was done at the expense of a substantial decrease in the joint moment contribution to joint stability though, which goes against the intuition that greater stabilization is required to protect the shoulder from increasing loads. Slow arm elevations (<30°/s) are advantageous for joint mobility gain at low mechanical solicitation, whereas the intensity at 90°/s is high enough to stimulate muscular endurance improvements. Simple predictive equations of shoulder mechanical loading are provided. They allow for easy design of progressive protocols, either for the postoperative shoulder or the conditioning of athlete targeting very specific intensity regions.  相似文献   

7.
A neutral terminology to define 'invasive' species   总被引:8,自引:0,他引:8  
The use of simple terms to articulate ecological concepts can confuse ideological debates and undermine management efforts. This problem is particularly acute in studies of nonindigenous species, which alternatively have been called ‘exotic’, ‘introduced’, ‘invasive’ and ‘naturalised’, among others. Attempts to redefine commonly used terminology have proven difficult because authors are often partial to particular definitions. In an attempt to form a consensus on invasion terminology, we synthesize an invasional framework based on current models that break the invasion process into a series of consecutive, obligatory stages. Unlike previous efforts, we propose a neutral terminology based on this framework. This ‘stage‐based’ terminology can be used to supplement terms with ambiguous meanings (e.g. invasive, introduced, naturalized, weedy, etc.), and thereby improve clarity of future studies. This approach is based on the concept of ‘propagule pressure’ and has the additional benefit of identifying factors affecting the success of species at each stage. Under this framework, invasions can be more objectively understood as biogeographical, rather than taxonomic, phenomena; and author preferences in the use of existing terminology can be addressed. An example of this recommended protocol might be: ‘We examined distribution data to contrast the characteristics of invasive species (stages IVa and V) and noninvasive species (stages III and IVb)’.  相似文献   

8.
Female athletes participating in high-risk sports suffer anterior cruciate ligament (ACL) knee injury at a 4- to 6-fold greater rate than do male athletes. ACL injuries result either from contact mechanisms or from certain unexplained non-contact mechanisms occurring during daily professional sports activities. The occurrence of non-contact injuries points to the existence of certain factors intrinsic to the knee that can lead to ACL rupture. When knee joint movement overcomes the static and the dynamic constraint systems, non-contact ACL injury may occur. Certain recent results suggest that balance and neuromuscular control play a central role in knee joint stability, protection and prevention of ACL injuries. The purpose of this study is to evaluate balance neuromuscular skills in healthy Croatian female athletes by measuring their balance index score, as well as to estimate a possible correlation between their balance index score and balance effectiveness. This study is conducted in an effort to reduce the risk of future injuries and thus prevent female athletes from withdrawing from sports prematurely. We analysed fifty-two female athletes in the high-risk sports of handball and volleyball, measuring for their static and dynamic balance index scores, using the Sport KAT 2000 testing system. This method may be used to monitor balance and coordination systems and may help to develop simpler measurements of neuromuscular control, which can be used to estimate risk predictors in athletes who withdraw from sports due to lower sports results or ruptured anterior cruciate ligament and to direct female athletes to more effective, targeted preventive interventions. The tested Croatian female athletes with lower sports results and ACL knee injury incurred after the testing were found to have a higher balance index score compared to healthy athletes. We therefore suggest that a higher balance index score can be used as an effective risk predictor for lower sports results and lesser sports motivation, anterior cruciate ligament injury and the ultimate decision to withdraw from active participation in sports. If the balance testing results prove to be effective in predicting the occurrence of ligament injuries during future sports activities, we suggest that prophylactic training programs be introduced during athlete training, since the prevention of an initial injury will be more effective than prevention of injury recurrence.  相似文献   

9.
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the ‘Distributed model’, which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.  相似文献   

10.
It has been suggested that minimisation of energy cost is one of the primary determinants of wheelchair designs. Wheel camber is one important parameter related to wheelchair design and its angle may affect usability during manual propulsion. However, there is little available literature addressing the effect of wheel camber on the mechanical energy or power flow involved in manual wheelchair propulsion. Twelve normal subjects (mean age, 22.3 years; SD, 1.6 years) participated in this study. A video-tracking system and an instrumented wheel were used to collect 3D kinematic and kinetic data. Wheel camber of 0° and 15° was chosen to examine the difference between mechanical power and power flow of the upper extremity during manual wheelchair propulsion. The work calculated from power flow and the discrepancy between the mechanical work and power flow work of upper extremity had significantly greater values with increased camber. The upper arm had a larger active muscle power compared with that in the forearm and hand segments. While propelling the increased camber, the magnitude of both the proximal and distal joint power and proximal muscle power was increased in all three segments. While the propelling wheel with camber not only needs a greater energy cost but also there is greater energy loss.  相似文献   

11.
Luis Gimenez 《Ecography》2019,42(4):643-657
Dispersal and migration can be important drivers of species distributions. Because the paths followed by individuals of many species are curvilinear, spatial statistical models based on rectilinear coordinates systems would fail to predict population connectivity or the ecological consequences of migration or species invasions. I propose that we view migration/dispersal as if organisms were moving along curvilinear geometrical objects called smooth manifolds. In that view, the curvilinear pathways become the ‘shortest realised paths’ arising from the necessity to minimise mortality risks and energy costs. One can then define curvilinear coordinate systems on such manifolds. I describe a procedure to incorporate manifolds and define appropriate coordinate systems, with focus on trajectories (1D manifolds), as parts of mechanistic ecological models. I show how a statistical method, known as ‘manifold learning’, enables one to define the manifold and the appropriate coordinate systems needed to calculate population connectivity or study the effects of migrations (e.g. in aquatic invertebrates, fish, insects and birds). This approach may help in the design of networks of protected areas, in studying the consequences of invasion, range expansions, or transfer of parasites/diseases. Overall, a geometrical view to animal movement gives a novel perspective to the understanding of the ecological role of dispersal and migration.  相似文献   

12.
13.
Elizabeth Durham 《Ethnos》2018,83(1):119-135
This article refines established notions of rumour as a strategy of discursive empowerment by differentiating typologies of empowerment. Specifically, I employ terminology from the anthropological literature on witchcraft to distinguish between ‘levelling’ rumour, which seeks to attack the power of others, and ‘accumulative’ rumour, which seeks to increase the power of rumour-tellers. To exemplify this, I explore a rumour that circulated in 2012 and 2013 among practitioners of traditional medicine in West Cameroon, which claimed that the state would kill tradipractitioners working to cure HIV/AIDS. I first outline the likely sociopolitical roots of practitioners’ anxiety regarding their intellectual labour. I then argue that this narrative was simultaneously levelling and accumulative in a national context, yet became accumulative in the more international context of practitioner–anthropologist relations. Ultimately, both forms of empowerment were key to understanding the rumour's favourable positioning of tradipractitioners in an increasingly uncertain, tense, and multinational part of Cameroon.  相似文献   

14.
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as ‘joint’ or ‘cartilage’ or ‘synovium’ or ‘bone’ and ‘osteoarthritis’ and/or ‘trauma’ and ‘sympathetic nerve fibers’ and/or ‘norepinephrine’ and ‘adrenergic receptors / adrenoceptors’ as well as ‘adrenergic therapy’.  相似文献   

15.
A rapidly spreading decline of ‘Minneola’ tangelos, ‘Shamouti’ and ‘Valencia’ sweet oranges grafted on sour orange rootstock in the Morasha area, in the coastal plain of Israel, was found to be caused by a severe ‘seedling yellows’ strain of the citrus tristeza virus (CTV). Repeated ELISA tests revealed great variation in distribution of CTV throughout the canopies, even in declining trees. In a substantial number of the declining trees, samples of up to 10 twigs per tree were not always sufficient for CTV detection. The ELISA values (O.D. 405 nm) in the parts found infected were high, whereas in most of the twigs showing negative ELISA results the virus was absent as indicated by biological indexing. The Morasha strain of CTV was also characterised by rapid annual spread rates. The ratio D/E (the proportion of Declining trees found among ELISA-positive ones) is proposed as a simple index of strain severity. The epidemiological consequences of the uneven distribution of CTV and rapid decline are discussed.  相似文献   

16.
Lethal interactions among large vertebrate predators have long interested researchers because of ecological and conservation issues. Research focusing on lethal interactions among vertebrate top predators has used several terms with a broad sense, and also introduced new terminology. We analysed the published literature with reference to the main underlying concepts and the use of terminology and its ecological context. The most frequently used terms in the literature were ‘predation’, ‘intraguild predation’, ‘interference competition’, and ‘interspecific killing’. Most studies presented evidence of the killing of the victim (77%), but information regarding its consumption was not given in 48% of cases. More than half of the analysed studies (56%) had no solid information on the degree of competition between interacting species. By reviewing definitions and their underlying assumptions, we demonstrate that lethal interactions among large vertebrate predators could be designated using four terms—‘predation’, ‘intraguild predation’, ‘interspecific competitive killing’, and ‘superpredation’—without the need to employ additional terminology that may increase confusion and misuse. For a correct framework of these lethal interactions it is critical to assess if the kill is consumed, if the victim is indeed a competitor of the killer, and if the prey is a high‐order predator. However, these elements of the framework are simultaneously the most common constraints to studies of lethal interactions, since they often require a great effort to obtain. The proper use of terms and concepts is fundamental to understanding the causes behind lethal interactions and, ultimately, what is actually happening in these complex interactions.  相似文献   

17.
Aim The aim of this work was to estimate on a regional scale the effects of nitrogen (N) deposition and harvest intensity on N‐budgets in forest soils as a basis for strategies of emission reduction and sustainable forest management methods. Location The calculations were applied to Sweden, a country with a managed forest area of 23 × 106 ha. Methods Mass balance calculations, including N‐deposition, N‐fixation, N‐loss through harvest, and N‐leaching, were performed on a GIS platform using 5 × 5 km grids. Modelled deposition data together with spatial data obtained from the National Forest Inventory served as the basis for the calculations. Four different scenarios were run: a ‘base scenario’ involving present deposition and conventional forestry (stem harvest only); a ‘whole‐tree harvesting scenario’ with present deposition and the harvesting of stems, branches and needles; a ‘decreased deposition scenario’; and a ‘whole‐tree harvesting and decreased deposition scenario’. Results There was a sharp N‐accumulation gradient with an increase in accumulation in the direction of the south‐western part of Sweden. In the ‘base scenario’, N‐accumulation appeared in the country as a whole, apart from certain small areas in the northern part. Whole‐tree harvesting led to net losses in extensive areas located mainly in northern and central Sweden. In most parts of the country, whole‐tree harvesting combined with decreased deposition was found to result in net losses. Main conclusions The intensity of the forestry has a strong impact on the N‐budget. Conventional forestry in combination with the present deposition level results in a high net accumulation of N in the south‐western parts of Sweden and accordingly, in a risk of unwanted environmental effects such as increased N‐leaching. With whole‐tree harvesting, the N‐balance is negative in parts of Sweden, mainly in the northern and central parts. N‐fertilization may become necessary there if the present level of forest production is to be maintained.  相似文献   

18.
In sports analytics, an understanding of accurate on-field 3D knee joint moments (KJM) could provide an early warning system for athlete workload exposure and knee injury risk. Traditionally, this analysis has relied on captive laboratory force plates and associated downstream biomechanical modeling, and many researchers have approached the problem of portability by extrapolating models built on linear statistics. An alternative approach would be to capitalize on recent advances in deep learning. In this study, using the pre-trained CaffeNet convolutional neural network (CNN) model, multivariate regression of marker-based motion capture to 3D KJM for three sports-related movement types were compared. The strongest overall mean correlation to source modeling of 0.8895 was achieved over the initial 33% of stance phase for sidestepping. The accuracy of these mean predictions of the three critical KJM associated with anterior cruciate ligament (ACL) injury demonstrate the feasibility of on-field knee injury assessment using deep learning in lieu of laboratory embedded force plates. This multidisciplinary research approach significantly advances machine representation of real-world physical models with practical application for both community and professional level athletes.  相似文献   

19.
Anterior cruciate ligament (ACL) injury is a common injury encountered by sport medicine clinicians. Surgical reconstruction is the recommended treatment of choice for those athletes wishing to return to full-contact sports participation and for sports requiring multi-directional movement patterns. The aim of ACL reconstruction is to restore knee joint mechanical stability such that the athlete can return to sporting participation. However, knowledge regarding the extent to which lower limb kinematic profiles are restored following ACL reconstruction is limited. In the present study the hip and knee joint kinematic profiles of 13 ACL reconstructed (ACL-R) and 16 non-injured control subjects were investigated during the performance of a diagonal jump landing task. The ACL-R group exhibited significantly less peak knee joint flexion (P=0.01). Significant between group differences were noted for time averaged hip joint sagittal plane (P<0.05) and transverse plane (P<0.05) kinematic profiles, as well as knee joint frontal plane (P<0.05) and sagittal plane (P<0.05) kinematic profiles. These results suggest that aberrant hip and knee joint kinematic profiles are present following ACL reconstruction, which could influence future injury risk.  相似文献   

20.
Muscle force partitioning methods and musculoskeletal system simplifications are key modeling issues that can alter outcomes, and thus change conclusions and recommendations addressed to health and safety professionals. A critical modeling concern is the use of single-joint equilibrium to estimate muscle forces and joint loads in a multi-joint system, an unjustified simplification made by most lumbar spine biomechanical models. In the context of common occupational tasks, an EMG-assisted optimization method (EMGAO) is modified in this study to simultaneously account for the equilibrium at all lumbar joints (M-EMGAO). The results of this improved approach were compared to those of its conventional single-joint equivalent (S-EMGAO) counterpart, the latter method being applied to the same lumbar joints but one at a time. Despite identical geometrical configurations and passive contributions used in both models, computed outcomes clearly differed between single- and multi-joint methods, especially at larger trunk flexed postures and during asymmetric lifting. Moreover, muscle forces predicted by L5-S1 single-joint analyses do not maintain mechanical equilibrium at other spine joints crossed by the same muscles. Assuming that the central nervous system does not attempt to balance the external moments one joint at a time and that a given muscle cannot exert different forces at different joints, the proposed multi-joint method represents a substantial improvement over its single-joint counterpart. This improved approach, hence, resolves trunk muscle forces with biological integrity but without compromising mechanical equilibrium at the lumbar joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号