首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were undertaken to determine if changes in the amplitude of luteinizing hormone (LH) pulses that occur in response to changes in the frequency of gonadotropin-releasing hormone (GnRH) pulses are due to an alteration in the number of GnRH receptors. Ewes were ovariectomized (OVX) and the hypothalamus was disconnected from the pituitary (HPD). Ewes were then given pulses of GnRH at a frequency of 1/h or 1/3 h. Two control groups were included: OVX ewes not subjected to HPD, and HPD ewes that were not OVX. At the end of one week of treatment, blood samples were collected to determine the amplitude of LH pulses. The treated ewes were killed just before the next scheduled pulse of GnRH, and the content of LH and number of GnRH receptors were measured in each pituitary. The amplitude of LH pulses was highly correlated with the amount of LH in the pituitary gland (r = 0.71, p less than 0.01), and both LH content and pulse amplitude (mean + SEM) were higher in ewes receiving GnRH once per 3 h (189.7 +/- 39.3 microgram/pituitary, 10.3 +/- 1.1 ng/ml, respectively) than in ewes receiving GnRH once per h (77.8 +/- 11.4 microgram/pituitary, 5.2 +/- 1.3 ng/ml). The pituitary content of LH was highest in the OVX ewes (260.2 +/- 57.4 micrograms/pituitary) and lowest in the nonpulsed HPD ewes (61.7 +/- 51.2 micrograms/pituitary). The number of GnRH receptors was similar in all groups, and was not correlated with any other variable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

3.
The media (secreted isoforms) and tissue extracts (intracellular isoforms) from ovine and bovine pituitaries perifused in vitro were chromatofocused to examine the pattern of LH isoforms secreted. At slaughter, anterior pituitaries from castrated male cattle (n = 6) and sheep (n = 4) were collected, sectioned mid-sagitally, and weighed. One half was immediately frozen and used to assess intracellular isoforms of LH. The remaining half was sliced and perifused for 120 min to allow attainment of a stable basal secretion rate and then stimulated with 5 x 10(-8) M LHRH. Effluent samples were collected and assayed for LH. Samples representing basal or LHRH-induced secretion were pooled, dialyzed against water, and lyophilized. Pituitary extracts were desalted by flow dialysis against water. All samples were chromatofocused on pH 10.5-7.0 gradients, and concentrations of LH in eluant fractions were determined by RIA. LH in pituitary extracts resolved into nine peaks, which were coded with letters beginning with the most basic isoform. Isoforms A, B, and C were nondetectable (bovine; p less than 0.01) or constituted a smaller percentage of total LH (ovine; p less than 0.05) in perifusates compared to intracellular samples. The percentages of isoforms D and E were lower (p less than 0.05) in perifusates than in intracellular samples from the ovine extracts but similar for the bovine (p greater than 0.05). Isoforms F and G were proportionately higher (p less than 0.05) in basal (bovine) and LHRH-induced (bovine and ovine) samples than in intracellular samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The in vitro incorporation of [3H]leucine into immunoprecipitable follicle-stimulating hormone (FSH) and luteinizing hormone (LH) was assessed for pituitaries from pony mares treated with testosterone propionate (TP) or oil (controls). Mares were treated every other day with TP (n = 4) at 350 micrograms/kg of body weight or with an equivalent volume of oil (n = 4). One day following the sixth injection of TP, each mare received an intravenous injection of gonadotropin releasing hormone (GnRH) at 1.0 micrograms/kg body weight and was bled frequently for 4 h. Treatment of mares with TP reduced FSH (P less than 0.05) and LH (P less than 0.01) concentrations in daily blood samples and increased (P less than 0.01) the amount of FSH secreted in response to GnRH compared with control mares. Incorporation of [3H]leucine into immunoprecipitable FSH was also greater (P less than 0.01) in pituitaries from TP-treated mares compared with control mares on both a per mg tissue and per anterior pituitary basis. The amount of LH secreted after GnRH, the amount left in the pituitary and the incorporation of [3H]leucine into LH were not affected by treatment. These results confirm earlier conclusions drawn from indirect evidence that androgens increase the production of FSH in the mare.  相似文献   

5.
Anestrous lighthorse mares were treated in December with dihydrotestosterone (DHT; 150 micrograms/kg of body weight), progesterone (P; 164 micrograms/kg), both DHT and P (DHT+P), testosterone (T; 150 micrograms/kg), or vehicle (n = 4/group). Daily blood sampling was started on Day 1, and on Day 4 all mares were administered a pretreatment injection of gonadotropin-releasing hormone (GnRH) and were bled frequently to characterize the responses of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations. Treatment injections were given on Day 4 and then daily through Day 17. On Day 18, all mares were again administered GnRH and were bled frequently. Treatment of mares with DHT, P, or T increased (p less than 0.01) plasma concentrations of these steroids to approximately 1.5 ng/ml during the last 10 days of treatment. There was no effect (p greater than 0.10) of treatment on LH or FSH concentrations in daily blood samples. Relative to the pretreatment GnRH injection, mares treated with T or DHT+P secreted approximately 65% more (p less than 0.01) FSH in response to the post-treatment GnRH injection; FSH response to the second GnRH injection was not altered (p greater than 0.10) in control mares or in DHT- or P-treated mares. There was no effect of any steroid treatment on LH secretion after administration of GnRH (p greater than 0.10). Averaged over all mares, approximately 94 times more FSH than LH was secreted in response to injection of GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Before and on the 30th day of danazol administration (200 mg/day), in six postmenopausal women the activity of endogenous opioid peptides has been indirectly evaluated by the effect on LH secretion and body temperature (measured as rectal temperature) exerted by the infusion of the opioid antagonist naloxone (1.6 mg/h x 4 h preceded by 1.6 mg iv bolus). Before and during danazol administration a GnRH test (100 mcg iv bolus) was also performed to evaluate possible variations in pituitary responsiveness to GnRH. Danazol significantly reduced mean plasma levels of LH and FSH (p less than 0.01), and their response to GnRH stimulus (p less than 0.05). Either before or during danazol administration mean plasma LH and FSH levels did not vary during the infusion of naloxone, while body temperature significantly decreased (p less than 0.01). The decrease in body temperature was significantly greater (p less than 0.05) during danazol than before treatment. The present data suggest that in postmenopausal women a low dose of danazol exerts an antigonadotropic effect mainly reducing the pituitary responsiveness to GnRH. The enhanced hypothermic response to naloxone observed during danazol administration also seems to suggest that in postmenopausal women a low dose of danazol enhances the thermoregulatory role of endogenous opioid peptides.  相似文献   

7.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

8.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

10.
Gonadotrope function during continuous infusion of estradiol (E2) was evaluated in orchidectomized sheep (wethers). Serum concentrations of LH were reduced (p less than 0.05) within 3 h of introduction of E2 and remained depressed for the period of E2 delivery (48 h). Gonadotrope responsiveness (change in LH secretion induced by a 500-ng GnRH challenge, i.v.) was assessed 0, 3, 6, 12, 24, or 48 h after initiation of E2 infusion. Gonadotrope responsiveness was augmented (p less than 0.05) 12, 24, and 48 h after first introduction of E2. In a companion study, anterior pituitary tissue was collected 0, 3, 6, 12, 24, or 48 h after the beginning of E2 infusion. Tissue concentration of GnRH receptor was increased 3-fold within 12 h of first introduction of E2. Tissue stores of LH were also increased (p less than 0.05) during E2 infusion. Passive immunization against GnRH increased (p less than 0.05) tissue stores of LH, but had no effect on GnRH receptor concentration. Passive immunization against GnRH and concurrent infusion of E2 increased (p less than 0.05) both tissue stores of LH and tissue concentrations of GnRH receptor. The acute suppression of LH secretion induced by infusion of E2 was not affected by concurrent episodic administration of GnRH (200 ng/hourly pulse). However, serum concentrations of LH were restored to pretreatment levels within 12 h of initiation of E2 infusion and episodic delivery of GnRH. These data indicate that E2 acts in wethers to suppress gonadotropin secretion while simultaneously increasing GnRH receptor concentration, tissue stores of LH, and gonadotrope responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this experiment was to determine if pituitary stores of LH could be replenished by administration of GnRH when circulating concentrations of both progesterone and estradiol-17 beta (estradiol) were present at levels observed during late gestation. Ten ovariectomized (OVX) ewes were administered estradiol and progesterone via Silastic implants for 69 days. One group of 5 steroid-treated OVX ewes was given GnRH for an additional 42 days (250 ng once every 4 h). Steroid treatment alone reduced (p less than 0.01) the amount of LH in the anterior pituitary gland by 77%. Pulsatile administration of GnRH to steroid-treated ewes resulted in a further decrease (p less than 0.01) in pituitary content of LH. Compared to the OVX ewes, concentrations of mRNAs for alpha- and LH beta-subunits were depressed (p less than 0.01) in all steroid-treated ewes, whether or not they received GnRH. The ability of the dosage of GnRH used to induce release of LH was examined by collecting blood samples for analysis of LH at 15 days and 42 days after GnRH treatment was initiated. Two of 5 and 3 of 5 steroid-treated ewes that received pulses of GnRH responded with increased serum concentrations of LH after GnRH administration during the first and second bleedings, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
R L Matteri  G P Moberg 《Peptides》1985,6(5):957-963
Although a hypothalamic site of action has been firmly established for opiate-mediated gonadotropin regulation, there have been several reports which indicate the possibility of a direct influence on the pituitary gland. The objective of this study was to further investigate this possibility in an in vitro pituitary perifusion system utilizing ovine tissue. Treatment with gamma-endorphin (GE) or human beta-endorphin (hBE) resulted in elevated basal LH release (p less than 0.05), followed by an inhibition in the response to a subsequent GnRH challenge (p less than 0.05). The stimulatory effect of hBE was found to be dose-responsive (p less than 0.01). PRL secretion was not similarly stimulated. Ovine beta-endorphin (oBE) had no effect on LH secretion, even though it differs from hBE by only 2 amino acids and contains the active GE sequence. Met-enkephalin also did not influence gonadotropin secretion. Naloxone pretreatment did not reverse the effects of hBE on gonadotropin release. It was found, however, that [D-pGlu1, D-Phe2, D-Trp3,6]-GnRH, a specific GnRH receptor antagonist, did reduce hBE-induced LH and FSH release (p less than 0.05). Naloxone pretreatment alone suppressed the response to GnRH (p less than 0.05). These data indicate that certain opioid peptides can influence ovine gonadotropin secretion in vitro by activating the GnRH receptor. Furthermore, a facilitory role is suggested for endogenous opiates in the local regulation of pituitary gonadotropin secretion.  相似文献   

15.
This study was carried out to test the hypothesis that reduced hypothalamic GnRH release is responsible for the suppression of reproductive functions during starvation. Adult male rats were kept for 4 days under total fasting (only water allowed) and injected during this time at 2-h intervals with 100 or 500 ng/kg BW of GnRH or vehicle. Serum levels of LH and FSH decreased by 30% during starvation (p less than 0.05), and these effects were fully reversed by either dose of GnRH treatment. Starvation reduced the pituitary mRNA contents of the gonadotropin common alpha- and FSH beta-subunits by 30% and 35% in starved animals (p less than 0.05 for both), but the LH beta-subunit mRNA was unaffected. The GnRH treatments partly or totally reversed these changes, but up-regulation of the mRNA levels by GnRH was seen only in controls fed ad libitum. Starvation reduced the testicular and serum levels of testosterone by 84% (p less than 0.01) and 42% (p less than 0.05), respectively. These changes were fully reversed by the 500-ng/kg dose of GnRH treatment during fasting, but only serum T was completely reversed by the 100-ng/kg GnRH treatment. To elucidate whether fasting per se had direct effects at the gonadal level, we blocked the secretion of gonadotropins by treatment with a GnRH antagonist, and replaced the gonadotropins by injecting of hCG (10 IU/kg BW once daily) and hFSH (75 IU/kg BW once daily). No differences were observed between starved and control animals in either testicular or serum levels of T, or in accessory sex gland weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Ovariectomized ewes received intramuscular (i.m.) injections of an H1-histamine receptor antagonist, diphenhydramine, or saline during the anestrous and breeding seasons to determine if histamine may regulate the estradiol-induced surge release of LH in ewes. In addition, concentrations of histamine and GnRH in hypothalamic regions and histamine and LH in the pituitary gland were determined during the estradiol-induced surge of LH. Pretreatment mean, basal, and estradiol-induced secretion of LH did not differ (P > 0.05) among seasons. However, the quantity of LH (ng) measured during the estradiol-induced surge of LH was less (P < 0.05) in ewes treated with diphenhydramine (411 ± 104) than saline (747 ± 133). Treatment with diphenhydramine did not (P > 0.05) influence steady-state concentrations of histamine in hypothalamic or pituitary gland tissues, hypothalamic concentrations of GnRH, or anterior pituitary concentrations of LH during the estradiol-induced surge of LH. It is concluded that histamine may modulate the estradiol-induced surge release of LH in ewes by affecting the secretion of GnRH.  相似文献   

17.
18.
Primary cultures of ovine pituitary cells were used to characterize the effects of inhibin and activin on the secretion of gonadotropins and on the regulation of number of GnRH receptors in the presence or absence of estradiol. Number of GnRH receptors was determined by the specific binding of a saturating dose of [125I]des-Gly10-D-Trp6-GnRH-ethylamide (GnRH-A). Recombinant human inhibin-A (rh-inhibin-A) or inhibin in porcine and bovine follicular fluid (pFF and bFF, respectively) decreased secretion of FSH in a dose-dependent manner, with maximum inhibition at an inhibin concentration of approximately 0.1 nM. Neither pFF or bFF affected secretion of LH, although rh-inhibin-A caused a modest decrease (p less than 0.05) in secretion of LH. Treatment of cells with rh-inhibin-A, bFF, or pFF approximately doubled the number of GnRH receptors. Scatchard analysis indicated that increases in GnRH-A binding were due to an increase in receptor number rather than a change in affinity. Additionally, rh-inhibin-A, at a dose that doubled numbers of GnRH receptors, increased GnRH-induced LH release above that caused by GnRH alone, indicating that the increase in receptor number leads to increased responsiveness to GnRH. Recombinant human activin-A (rh-activin-A) increased secretion of FSH but did not affect secretion of LH. Number of GnRH receptors was not affected by lower concentrations of rh-activin-A but was decreased (p less than 0.05) by 3.0 nM activin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Seasonal changes in the hypothalamic-hypophyseal axis were investigated using tissue from 49 light-horse mares, of mixed breeding. Hypothalamic and pituitary tissues were collected at 5 intervals throughout the years 1981 and 1982, representing midbreeding season (July, n = 10), transition out of the breeding season (October, n = 11), midanestrus (December, n = 8), transition into the breeding season (March, n = 10), and again in the following midbreeding season (July, n = 10). The hypothalamic region was dissected into preoptic area, body and median eminence. Gonadotropin-releasing hormone (GnRH) was extracted from hypothalamic samples with methanol-formic acid and quantified by radioimmunoassay. The anterior pituitary was homogenized and receptors for GnRH were quantified in a crude membrane fraction. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in the resulting supernatant. Content of GnRH in each of the 3 hypothalamic areas varied with season (P less than 0.01) and was lowest during midanestrus (P less than 0.05). There was no effect of season (P greater than 0.01) on either concentration or total number of receptors for GnRH, or concentration of FSH in the anterior pituitary. Concentrations of LH in the anterior pituitary varied with season (P less than 0.001). Means (+/- SEM) for the 5 collection times were 15.5 +/- 2.7, 9.7 +/- 2.4, 2.3 +/- 0.5, 2.7 +/- 0.4 and 11.7 +/- 1.5 microgram LH/mg anterior pituitary, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate the mechanisms by which GnRH regulates FSH production in the human fetus, dispersed pituitary cells from second trimester human fetuses were cultured on surface-modified plates. Exposure of cells to GnRH [(10(-8) and 10(-7) mol/L), study I] or [D-Ala6]des-Gly10-GnRH ethylamide (DALA) [(10(-11) to 10(-7) mol/L), study II] for 48 h resulted in an elevation of total FSH which correlated with an increase in releasable, but not nonreleasable, FSH. When pituitary cells were incubated for 24, 48 and 72 h with and without 10(-8) mol/L GnRH (study III), total FSH was significantly increased in cells cultured for 48-72 h without GnRH compared to cells lysed at the beginning of the incubation (p less than 0.001). At all intervals, GnRH significantly enhanced total FSH compared to respective controls (p less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号