首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NBD-taurine [N-(7-nitrobenzofuran-4-yl) taurine], a fluorescent substrate for the human erythrocyte anion exchange system, has been used to test the feasibility of making flow cytometric measurements of anion transport in K562 erythroleukemic cells. Cells were preloaded by incubation with 20 microM-2mM NBD-taurine, then diluted 10-30-fold, and efflux was monitored by measuring fluorescence intensity (FL) as a function of time using excitation at 488 nm. The observed rate of decrease in fluorescence was sensitive to temperature and also to phloretin, a compound known to inhibit anion transport and other carrier-mediated transport processes. The coefficient of variation (CV) of the fluorescence distribution increased markedly over the efflux period, suggesting heterogeneity of the K562 population with respect to the rate constant for NBD-taurine efflux. This heterogeneity was also reflected in the upward curvature of a first order plot of log (FLt - FL infinity) versus time. Half-times calculated from initial linear portions of the first-order plots were found to decrease as the loading concentration of NBD-taurine was decreased, as predicted for a saturable transport system. NBD-taurine is not an ideal anion transport substrate for flow cytometric studies. It appears to bind to high-affinity sites within the cells with consequent fluorescence quenching, complicating interpretation of kinetic curves at low concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Single-cell flux measurement by continuous fluorescence microphotolysis   总被引:1,自引:0,他引:1  
Continuous fluorescence microphotolysis (CFM) was adapted to flux measurements in single cells. The principle of the method is simple: Cells are equilibrated with a fluorescent solute, an individual cell is continuously irradiated by a laser beam focussed down to approximately the diameter of the cell, and fluorescence originating from the irradiated cell is monitored. In this procedure irradiation irreversibly photolyzes chromophores in the cell while fresh chromophores enter the cell by membrane transport (flux). The resulting fluorescence decay can be analyzed for the rate constants of both membrane transport and photolysis. As an experimental test of the new method the band-3 mediated transport of the fluorescent anion N-(7-nitrobenzofuranzan-4-yl)-taurine (NBD-taurine) across the erythrocyte membrane was measured. For various experimental conditions good agreement between values obtained by CFM and by fluorescence microphotolysis (FM) was observed. By measurements on single ghosts it was furthermore found that photolysis of NBD-taurine is first-order with respect to the power of irradiation. On this basis a stepped-intensity procedure was worked out that facilitates data evaluation in flux measurements. Also, by analysing the relations between CFM and FM flux measurements a method was devised by which FM data can be corrected for (inevitable) photolysis.  相似文献   

3.
At 0 degrees C, pH 7.3, palmitate (PA) binds to human erythrocyte ghosts suspended in 0.2% bovine serum albumin (BSA) solution with molar ratios of PA to BSA, v, between 0.2 and 1.3. The binding depends on the water phase PA concentration, measured in equilibrium experiments, using BSA-filled ghosts as semipermeable bags. The saturable binding has a capacity of 19.4 +/- 7.5 nmol g-1 packed ghosts (7.2 x 10(9) cells) and Kd = 13.5 +/- 5 nM. PA exchange efflux kinetics to 0.2% BSA is recorded from ghosts without and with 0.2% BSA with a resolution time of about 1 s. Data are analyzed in terms of compartmental models. Using BSA-free ghosts the kinetics is essentially monoexponential. The rate constant is 0.0287 +/- 0.0022 s-1. Using ghosts with BSA, the kinetics is biexponential with widely different rate constants. Extrapolated zero-time values reflect, according to additional investigations, 'instantaneous' release of PA from the outer surface of the ghosts. Analyses of the biexponential curve up to about 55% tracer efflux assign unequivocally values to three model parameters. (1) k1, the dissociation rate constant of the PA-BSA complex is (1.47 +/- 0.03) x 10(-3) s-1 and (2.56 +/- 0.08) x 10(-3) s-1 and (4.08 +/- 0.13) x 10(-3) s-1 at v = 0.2, 0.6 and 1.4, respectively. (2) k3*, the overall rate constant of PA transport from the inside of the ghost membrane to the medium is 0.0269 +/- 0.0020 s-1 independent of v. (3) Qkin, the ratio of PA on the inside of the membrane to PA on BSA within the ghosts is v dependent and smaller than a corresponding ratio Qeq measured in equilibrium by a value corresponding to PA on the outer surface. This fraction is released with a rate constant, k5, which is of the order of 1 s-1. The data suggest a maximum PA transport capacity, Jmax, of 2 pmol min-1 cm-2, 0 degrees C, pH 7.3.  相似文献   

4.
The technique of reversible hemolysis represents one approach which may be used to study transport regulation in nucleated red cells. After 1 h of incubation at 37 degrees C, 88% of the ghosts regained their permeability barrier to L-glucose. In these ghosts, the carrier-mediated rate of entry of 3-O-methylglucose was more than 10-fold greater than the rate in intact cells. Glyceraldehyde-3-phosphate dehydrogenase prevented ghosts from resealing when it was present at the time of hemolysis. Albumin, lactic dehydrogenase and peroxidase did not have this effect. Sugar transport rate could not be tested in the unsealed ghosts. Two possible mechanisms for the effect of hypotonic hemolysis on sugar transport rate were discussed: (1) altered membrane organization and (2) loss of intracellular compounds which bind to the membrane and inhibit transport in intact cells.  相似文献   

5.
The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments at 0 degrees C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 +/- 0.023, and the rate constant of unidirectional flux from inside to outside is 0.361 +/- 0.023 s(-1). The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]o) increases with the square root of [BSA]o in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane very rapidly, within seconds. At a molar ratio of anandamide to BSA of <1, membrane binding of anandamide increases with increasing temperatures between 0 degrees C and 37 degrees C, and the equilibrium dissociation constants are in the nanomolar range. The nature of membrane binding and the mechanism of membrane translocation are discussed.  相似文献   

6.
Human erythrocytes were exposed to oxidative stress by treatment with the slowly hemolytic drug phenylhydrazine. Phenylhydrazine has been previously shown to trigger the production of toxic oxygen metabolites including O-2 and H2O2 and the formation of Heinz bodies. The concentration-dependent formation of Heinz bodies was confirmed using optical microscopy. Heinz body formation was accompanied by surface protuberances as shown by scanning electron microscopy. The formation of Heinz bodies was accompanied by inhibition of anion translocation. Anion translocation was measured using the anionic fluorescent substrate analog N-(2-aminoethylsulfonate)-7-nitrobenz-2-oxa-1,3-diazole (NBD-taurine). The efflux of NBD-taurine was measured by continuous monitoring of transport by fluorescence (CMTF). The mean value of the kinetic rate constant for transport, k, was found to be -0.090 +/- 0.017 min-1. Phenylhydrazine was found to decrease k to less than one-half of control values in a dose-dependent fashion. The disruption of anion translocation may be related to the oxidative effects of phenylhydrazine and to the generation of Heinz bodies, which bind to the N-terminal domain of band 3.  相似文献   

7.
Anion transport activity and thermotropic behavior of Band 3 are found to be altered after binding of concanavalin (Con A) to human erythrocyte ghosts and isolated Band 3. At lower Con A concentration, the rate coefficients of anion transport enhance with increasing Con A concentration, while noticeable changes of the largest calorimetric endotherm of human erythrocyte membranes termed the C transition (Band 3) can not be observed. With 50 micrograms/ml of Con A, the rate coefficient of Con A-modified ghosts increases 34.4% in comparison with that of normal ghosts. Binding of Con A in lower concentration to ghosts bring about increase of fluidity of lipid which maybe contribute to increase anion transport via Band 3. At higher Con A concentration, the C transition tend to lower temperature with increase in Con A concentration, the C transition is shifted from 69.25 degrees C to 66.25 degrees C with 2.5 mg/ml Con A. It is suggested that the Con A-modified Band 3 possess a looser structure than normal one.  相似文献   

8.
Fusion of chromaffin granule ghosts was induced by synexin at pH 6, 37 degrees C, in the presence of 10(-7) M Ca2+. To study the kinetics and extent of this fusion process we employed two assays that monitored continuously mixing of aqueous contents or membrane mixing by fluorescence intensity increases. In both assays chromaffin granule ghosts were either labeled on the membrane or in the included aqueous phase. The ratios of blank to labeled chromaffin granule ghosts were varied from 1 to 10. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of aggregation followed by a first-order fusion reaction. The model calculations gave fare simulations and predictions of the experimental results. The rate constants describing membrane mixing are more than 2-fold larger than those for volume mixing. The analysis also indicated that the initial aggregation and fusion processes, up to dimer formation, were extremely fast. The rate constant of aggregation was close to the limit in diffusion-controlled processes, whereas the fusion rate constant was about the same as found in fastest virus-liposome fusion events at pH 5. A small increase in volume was found to accompany the fusion between chromaffin granule ghosts. Using ratios of synexin to chromaffin granule ghost protein of 0.13, 0.41 and 1.15 indicated that the overall fusion rate was larger for the intermediate (0.41) case. The analysis showed that the main activity of synexin was an enhancement of the rate of aggregation. At intermediate or excessive synexin concentrations it, respectively, promoted moderately, or inhibited the actual fusion step.  相似文献   

9.
The palmitate (PA) binding and transport capacity of human and bovine red cell membranes enables us to establish, in a biological system, the existence of a well-defined monomer concentration in equilibrium with PA bound to bovine serum albumin (BSA, 30 microM) inside the resealed red cell ghosts. Supernatants of suspensions of the [3H]PA-labeled ghosts contain a tiny quantity of dissolved binding capacities besides the monomer PA. This is demonstrated by linear regression of supernatant tracer concentrations versus ghost concentrations in a dilution series. The extrapolated value, corresponding to zero ghost concentration, is the monomer PA concentration in equilibrium with PA bound to BSA within the ghosts in molar ratio (nu). Measurements have been carried out for nu between 0.1 and 1.5 and at 0 degrees C, 10 degrees C, 23 degrees C and 38 degrees C. The important nu-dependent binding of PA to the ghost membrane itself enables us to use preparations of BSA-free ghosts in the same way, whereas this is impossible in the case of arachidonic acid. Within the physiological range of nu the PA monomer concentrations are accounted for by an apparent dissociation equilibrium constant (Kd) 3.4 10(-8) M at 38 degrees C calculated on basis of three equivalent binding sites per mol BSA. Kd depends on temperature with a well-defined enthalpy of 38.4 kJ/mol.  相似文献   

10.
The technique of reversible hemolysis represents one approach which may be used to study transport regulation in nucleated red cells. After 1 h of incubation at 37°C, 88% of the ghosts regained their permeability barrier to l-glucose. In these ghosts, the carrier-mediated rate of entry of 3-O-methylglucose was more than 10-fold greater than the rate in intact cells. Glyceraldehyde-3-phosphate dehydrogenase prevented ghosts from resealing when it was present at the time of hemolysis. Albumin, lactic dehydrogenase and peroxidase did not have this effect. Sugar transport rate could not be tested in the unsealed ghosts. Two possible mechanisms for the effect of hypotonic hemolysis on sugar transport rate were discussed: (1) altered membrane organization and (2) loss of intracellular compounds which bind to the membrane and inhibit transport in intact cells.  相似文献   

11.
Human erythrocyte membranes (ghosts) prepared from fresh blood changed in shape from spherical to crenated, when suspended in 10(-7)-10(-6) M Ca2+-EGTA buffers. Although the ghosts from long-stored ACD blood (10 weeks) were less sensitive to 10(-7)-10(-6) M Ca2+, the ghosts obtained from this blood after it had been preincubated with adenine and inosine for 3 h at 37 degrees C were highly sensitive to Ca2+. When these highly sensitive ghosts were incubated in 10 mM Tris-Cl buffer (pH 7.4) or 1 mM MgCl2 (pH 7.4) at 0 degrees C, they gradually lost Ca2+ sensitivity within 60 min, but they recovered Ca2+ sensitivity again after re-incubation with 2 mM Mg-ATP for 20 min at 37 degrees C followed by washing with 1 mM MgCl2 (pH 7.4). The shape of these highly Ca2+-sensitive ghosts immediately changed from crenate to disc on addition of 1 mM Mg-ATP even at 6 degrees C in the presence of 10(-7)-10(-6) M Ca2+. A similar shape change was also observed when ghosts treated with 0.5% Triton X-100 (Triton shells) were used. Triton shells from fresh blood ghosts or from long-stored blood ghosts which had been preincubated with 2 mM Mg-ATP for 20 min at 37 degrees C shrank immediately in the presence of 10(-6) M Ca2+ and then swelled on addition of 1 mM Mg-ATP. The specificity to ATP and the dependency on ATP concentration are in agreement with those of the ghost shape change at step 2 (Jinbu, Y. et al., Biochem biophys res commun 112 (1983) 384-390) [18]. These results suggest that cytoskeletal protein phosphorylation enhances sensitivity to Ca2+ and induces erythrocyte shape change in the presence of physiological concentrations of ATP and Ca2+.  相似文献   

12.
Glucose self-exchange flux (Jex) and net efflux (Jnet) in human red cells and ghosts were studied at 25 degrees C and pH 7.2 by means of the combined use of the Millipore-Swinnex filtering method and the continuous flow tube method to show the dependence of time of storage after aspiration, ATP and insulin. In fresh cells (RBC), ghosts (G), ghosts with 2 mM ATP (G +), and cells stored at 4 degrees C greater than 60 days (OC) both Jex and Jnet follow simple Michaelis-Menten kinetics where J = Jmax X Ci X (K1/2 + Ci)-1. Jmaxex and Jmaxnet (nmol X cm-2 X s-1), respectively, was: (RBC) 0.27 and 0.19, (G) 0.24 and 0.27, (G +) 0.23 and 0.24, (OC) 0.23 and 0.20. K1/2,ex and K1/2,net (mM), respectively, was: (RBC) 7.5 and 1.3, (G) 4.8 and 14.2, (G +) 11.6 and 6.8, (OC) 3.8 and 9.0. In ghosts, the ATP-dependent fraction of the permeability shows a hyperbolic dependence on glucose concentrations lower than 80 mM. Insulin up to 1 microM had effect on neither Jex nor Jnet in RBC. Based on reported values of cytochalasin B binding sites the turnover rate per site in RBC appears to be as high as in maximally insulin-stimulated fat cells. Our results suggest that the number of transport sites remains constant, independent of age, ATP and insulin.  相似文献   

13.
When human erythrocytes were preincubated at 37-52 degrees C under atmospheric pressure before exposure to a pressure of 200 MPa at 37 degrees C, the value of hemolysis was constant (about 43%) up to 45 degrees C but became minimal at 49 degrees C. The results from anti-spectrin antibody-entrapped red ghosts, spectrin-free vesicles, and N-(1-pyrenyl)iodoacetamide-labeled ghosts suggest that the denaturation of spectrin is associated with such behavior of hemolysis at 49 degrees C. The vesicles released at 200 MPa by 49 degrees C-preincubated erythrocytes were smaller than those released by the treatment at 49 degrees C or 200 MPa alone. The size of vesicles released at 200 MPa was independent of preincubation temperature up to 45 degrees C, and the vesicles released from 49 degrees C-preincubated erythrocytes became smaller with increasing pressure up to 200 MPa. Thus, hemolysis and vesiculation under high pressure are greatly affected by the conformation of spectrin before compression. Since spectrin remains intact up to 45 degrees C, the compression of erythrocytes at 200 MPa induces structural changes of spectrin followed by the release of large vesicles and hemolysis. On the other hand, in erythrocytes that are undergoing vesiculation due to spectrin denaturation at 49 degrees C, compression produces smaller vesicles, so that the hemolysis is suppressed.  相似文献   

14.
Band 3-mediated Cl- exchange in human red blood cells and resealed ghosts was measured at 38 degrees C by the continuous flow tube method. When external Cl- concentration, C(o), is varied with constant internal Cl- concentration, C(i), the flux fits a simple Michaelis-Menten saturation curve (MM fit), with K1/2o = 3.8 +/- 0.4 mM. When the Cl- concentration is varied simultaneously at both sides of the membrane in resealed ghosts (C(i) = C(o) = C(i = o)), the flux rises toward a flat maximum between 200 and 450 mM Cl-, and then decreases at very high C(i = o). An MM fit to the data with C(i = o) < 500 mM gives K1/2s of 106 +/- 13 mM; fits including modifier site inhibition (MS fit) give an over threefold higher K1/2s. Despite this uncertainty, the intrinsic asymmetry of unloaded transport sites, A (defined as E(o)/E(i) with C(i) = C(o), where E(i) is the fraction of unloaded inward-facing sites and E(o) is the fraction of unloaded outward-facing sites), calculated from K1/2s and K1/2o, ranges only from 0.046 to 0.107. A new method, which uses the initial slope of a plot of Cl- flux versus C(i = o), gives A values of 0.023 to 0.038. Flufenamic acid (FA) inhibits Cl- exchange by binding to an external site different from the transport site. At 38 degrees C, FA binds 24-36 times more tightly to E(o) than to E(i). Estimates of A from FA inhibitory potency range from 0.01 to 0.05. All methods, including bicarbonate data from the preceding paper, indicate that at 38 degrees C, like 0 degree C, far more band 3 molecules are in the E(i) than in the E(o) form. The agreement of various methods supports the ping-pong model for anion exchange, and demonstrates that the intrinsic asymmetry is very slightly, if at all, affected by temperature.  相似文献   

15.
It has been suggested that Lys-430 of band 3, with which eosin-5-maleimide (EM) reacts, is located in the external channel through which anions gain access to the external transport site, and that EM inhibits anion exchange by blocking this channel. To test this, we have used 35Cl nuclear magnetic resonance (NMR) to measure Cl- binding to the external transport site in control and EM-treated human red blood cells. Intact cells were used rather than ghosts, because in this case all line broadening (LB) results from binding to external sites. In an NMR spectrometer with a 9.4-T magnetic field, red blood cells at 50% concentration (v/v) in 150 mM Cl- medium at 3 degrees C caused 19.0 +/- 1.2 Hz LB. Of this, 7.9 +/- 0.7 Hz was due to Cl- binding to the high affinity band 3 transport sites, because it was prevented by an apparently competitive inhibitor of anion exchange, 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS). The LB was not due to hemoglobin released from the cells, as little LB remained in the supernatant after cells were removed by centrifugation. Saturable Cl- binding remained in EM-treated cells, although the binding was no longer DNDS-sensitive, because EM prevents binding of DNDS. The lower limit for the rate at which Cl- goes from the binding site to the external medium is 2.15 x 10(5) s-1 for control cells and 1.10 x 10(5) s-1 for EM-treated cells, far higher than the Cl- translocation rate at 3 degrees C (about 400 s-1). Thus, EM does not inhibit Cl- exchange by blocking the external access channel. EM may therefore be useful for fixing band 3 in one conformation for studies of Cl- binding to the external transport site.  相似文献   

16.
Summary The molecular mechanism of anion exchange across the human red blood cell membrane was assessed with the fluorescent substrate analog NBD-taurine and the method of continuous monitoring of transport by fluorescence. The efflux of NBD-taurine was studied under a variety of experimental conditions such as temperature, pH and anion composition of cells and media. The temperature profile of NBD-taurine transfer from Cl-loaded cells into Cl media resembled that of Cl self-exchange, whereas that of NBD-taurine transfer from sulfate-loaded cells into sulfate media resembled that of sulfate self-exchange. Although the pH profiles of NBD-taurine transfer from Cl-loaded cells into Cl media and that of Cl self-exchange resembled each other, the analogous transfer with sulfate replacing Cl was markedly different. These and other data were analyzed and found to be consistent with a model which comprises the following: (a) a H+-titratable group in the carrier mechanism; (b) alteration of transport sites between the two sides of the membrane (i.e., ping-pong kinetics); and (c) transmembrane distribution of transport sites which is modulated by pH. It is shown that NBD-taurine transfer represents a tracer flux of a fluorescent substrate which gives a measure for the presence of monovalent transport sites at the inner surface of the membrane. The latter is markedly affected by the relative concentrations of anions and H+ on both sides of the red blood cell membrane.  相似文献   

17.
Results are reported on the temperature-dependence of intact-cell surface area, isotonic volume, hemolytic volume, and ghost steady-state surface area and volume, using several techniques of resistive pulse spectroscopy. Temperature was found not to alter the intact cell surface area permanently: the area remains constant at 130 +/- 1 micron 2, at temperatures ranging from 0 to 40 degrees C. Temperature does alter the steady-state volume of the cells, with a colder temperature inducing swelling by about 0.29 micron 3/deg. C. Such a temperature-induced volume change is sufficient to explain only approximately half of the fragility differences which result from temperature changes. The remainder was found to result from higher temperatures enabling a substantial transient increase in surface area of intact cells (up to at least 14% of 40 degrees C), with a corresponding increase in the cell's hemolytic volume (up to 21%). The hemolytic volume apparently increases linearly with temperature, since steady-state ghost volumes are found to increase linearly with the temperature at which the ghosts were produced. In the steady state (at high temperature), the membranes of electrically-impermeable resealed ghosts can remain extended by more than 10%, compared with membranes of the corresponding unhemolyzed, intact red cells.  相似文献   

18.
Increasing free intracellular Ca (Cai) from less than 0.1 microM to 10 microM by means of A23187 activated Ca-stimulated K transport and inhibited the Na-K pump in resealed human red cell ghosts. These ghosts contained 2 mM ATP, which was maintained by a regenerating system, and arsenazo III to measure Cai. Ca-stimulated K transport was activated 50% at 2-3 microM free Cai and the Na-K pump was inhibited 50% by 5-10 microM free Cai. Free Cai from 1 to 8 microM stimulated K efflux before it inhibited the Na-K pump, dissociating the effect of Ca on the two systems. 3 microM trifluoperazine inhibited Ca-stimulated K efflux and 0.5 mM quinidine reduced Na-K pumping by 50%. In other studies, incubating fresh intact cells in solutions containing Ca and 0.5 microM A23187 caused the cells to lose K heterogeneously. Under the same conditions, increasing A23187 to 10 microM initiated a homogeneous loss of K. In ATP-deficient ghosts containing Cai equilibrated with A23187, K transport was activated at the same free Cai as in the ghosts containing 2 mM ATP. Neither Cao nor the presence of an inward Ca gradient altered the effect of free Cai on the permeability to K. In these ghosts, transmembrane interactions of Na and K influenced the rate of Ca-stimulated K efflux independent of Na- and K-induced changes in free Cai or sensitivity to Cai. At constant free Cai, increasing Ko from 0.1 to 3 mM stimulated K efflux, whereas further increasing Ko inhibited it. Increasing Nai at constant Ki and free Cai markedly decreased the rate of efflux at 2 mM Ko, but had no effect when Ko was greater than or equal to 20 mM. These transmembrane interactions indicate that the mechanism underlying Ca-stimulated K transport is mediated. Since these interactions from either side of the membrane are independent of free Cai, activation of the transport mechanism by Cai must be at a site that is independent of those responsible for the interaction of Na and K. In the presence of A23187, this activating site is half-maximally stimulated by approximately 2 microM free Ca and is not influenced by the concentration of ATP. The partial inhibition of Ca-stimulated K efflux by trifluoperazine in ghosts containing ATP suggests that calmodulin could be involved in the activation of K transport by Cai.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
We have measured the transbilayer diffusion at 4 degrees C of spin labeled analogs of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid in the human erythrocyte membrane. Measurements were also carried out in ghosts, released without ATP, and on large unilamellar vesicles made with total lipid extract. As reported previously (Seigneuret, M. and Devaux, P.F. (1984) Proc. Natl. Acad. Sci. USA 81, 3751-3755), the amino phospholipids are rapidly transported from the outer to the inner leaflet on fresh erythrocytes, whereas phosphatidylcholine diffuses slowly. We now show that phosphatidic acid behaves like phosphatidylcholine: approximately 10% is internalized in 5 h at 4 degrees C. Under the same experimental conditions, no inward transport of sphingomyelin can be detected. In ghosts resealed without ATP, all glycerophospholipids tested diffuse slowly from the outer to the inner leaflet (approx. 10% in 5 h) while no transport of sphingomyelin is seen. Finally in lipid vesicles, the inward diffusion of all glycerophospholipids is less than 2% in 5 h and a very small transport of sphingomyelin can be measured. These results confirm the existence of a selective inward aminophospholipid transport of fresh erythrocytes and suggest a slow and passive diffusion of all phospholipids on ghosts, resealed without ATP, as well as on lipid vesicles.  相似文献   

20.
Studies on the mechanism of catecholamine transport into chromaffin granules is complicated by the release of endogenous catecholamines. To overcome this problem chromaffin granule ghosts have been prepared by many investigators by osmotic lysis of the granules which results in a loss of over 90% of the endogenous catecholamine. However, in the studies reported here, the resulting ghosts still contained 36 ± 3.9 nmol epinephrine/mg of protein if they were lysed by passage through a Sephadex G-50 column preequilibrated with hypoosmtic media. This residual catecholamine was foun the slowly diffuse out of the ghosts in a temperature-dependent process at a rate sufficient to interfere with kinetic analysis of catecholamine transport. Attempts to remove the endogenous catecholamine from the ghosts indicated that most of it could not be removed by further osmotic shock or freeze-thaw treatments, but that over 85% of it was released from the granules by incubating them at 30°C for 90 min or by dialysis with a 35 and 86% loss of rate of catecholamine transport into the ghosts, respectively. If the endogenous catecholamine was removed from chromaffin granule ghosts by preincubating them for 90 min at 30°C, these resulting ghosts transported catecholamine with a linear Lineweaver-Burk plot indicating a Km of 12±2 μM. In addition, the resulting ghosts did not leak catecholamines over a 10 min period at 30°C, and the transport of catecholamines was blocked by reserpine and enhanced with increasing pH from 6.0 to 8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号