首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrawal N  Lesley SA  Kuhn P  Kohen A 《Biochemistry》2004,43(32):10295-10301
The ThyA gene that encodes for thymidylate synthase (TS) is absent in the genomes of a large number of bacteria, including several human pathogens. Many of these bacteria also lack the genes for dihydrofolate reductase (DHFR) and thymidine kinase and are totally dependent on an alternative enzyme for thymidylate synthesis. Thy1 encodes flavin-dependent TS (FDTS, previously denoted as TSCP) and shares no sequence homology with classical TS genes. Mechanistic studies of a FDTS from Thermotoga maritima (TM0449) are presented here. Several isotopic labeling experiments reveal details of the catalyzed reaction, and a chemical mechanism that is consistent with the experimental data is proposed. The reaction proceeds via a ping-pong mechanism where nicotinamide binding and release precedes the oxidative half-reaction. The enzyme is primarily pro-R specific with regard to the nicotinamide (NADPH), the oxidation of which is the rate-limiting step of the whole catalytic cascade. An enzyme-bound flavin is reduced with an isotope effect of 25 (consistent with H-tunneling) and exchanges protons with the solvent prior to the reduction of an intermediate methylene. A quantitative assay was developed, and the kinetic parameters were measured. A significant NADPH substrate inhibition and large K(M) rationalized the slow activity reported for this enzyme in the past. These and other findings are compared with classical TS (ThyA) catalysis in terms of kinetic and molecular mechanisms. The differences between the FDTS proposed mechanism and that of the classical TS are striking and invoke the notion that mechanism-based drugs will selectively inhibit FDTS and will not have much effect on human (and other eukaryotes) TS. Since TS activity is essential to DNA replication, the unique mechanism of FDTS makes it an attractive target for antibiotic drug development.  相似文献   

2.
Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme–product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.  相似文献   

3.
The reaction mechanism of Azospirillum brasilense glutamate synthase has been investigated by several approaches. 15N nuclear magnetic resonance studies demonstrate that the amide nitrogen of glutamine is reductively transferred to 2-oxoglutarate in an irreversible manner with no release of the transferred ammonia group into the medium. Identical results were obtained using thio-NADPH and acetylpyridine-NADPH, which are shown to be less efficient substrates of the enzyme than NADPH. Similarly, no exchange of the ammonia group being transferred with exogenous ammonium ion was observed during catalysis. The glutamate formed as the product of the iminoglutarate reduction was determined to be in the L configuration. The enzyme was also found to catalyze, under anaerobic conditions, the exchange of the 4proS H of NADPH with solvent both in the absence and in the presence of 2-oxoglutarate and glutamine. The reductive half-reaction is therefore a reversible segment of the overall irreversible amidotransferase reaction. 15N NMR studies also showed that the enzyme does not catalyze glutamate dehydrogenase/oxidase reactions or any observable glutaminase activity under neutral (pH 7.5) conditions. Glutaminase activity was also not observable with the reduced enzyme alone or in the presence of D-glutamate (a competitive inhibitor of glutamate synthase with respect to 2-oxoglutarate, with a Ki of about 11 microM) or with the oxidized enzyme in the presence of 2-oxoglutarate, D-glutamate, or NADP+. These data confirm species-dependent differences of A. brasilense glutamate synthase with respect to the enzyme from other sources.  相似文献   

4.
Contemporary enzymes are highly efficient and selective catalysts. However, due to the intrinsically very reactive nature of active sites, gratuitous secondary reactions are practically unavoidable. Consequently, even the smallest cell, with its limited enzymatic repertoire, has the potential to carry out numerous additional, very likely inefficient, secondary reactions. If selectively advantageous, secondary reactions could be the basis for the evolution of new fully functional enzymes. Here, we investigated if Escherichia coli has cryptic enzymatic activities related to thiamin biosynthesis. We selected this pathway because this vitamin is essential, but the cell's requirements are very small. Therefore, enzymes with very low activity could complement the auxotrophy of strains deleted of some bona fide thiamin biosynthetic genes. By overexpressing the E. coli's protein repertoire, we selected yjbQ, a gene that complemented a strain deleted of the thiamin phosphate synthase (TPS)-coding gene thiE. In vitro studies confirmed TPS activity, and by directed evolution experiments, this activity was enhanced. Structurally oriented mutagenesis allowed us to identify the putative active site. Remote orthologs of YjbQ from Thermotoga, Sulfolobus, and Pyrococcus were cloned and also showed thiamin auxotrophy complementation, indicating that the cryptic TPS activity is a property of this protein family. Interestingly, the thiE- and yjbQ-coded TPSs are analog enzymes with no structural similarity, reflecting distinct evolutionary origin. These results support the hypothesis that the enzymatic repertoire of a cell such as E. coli has the potential to perform vast amounts of alternative reactions, which could be exploited to evolve novel or more efficient catalysts.  相似文献   

5.
The crystal structure of Bacillus subtilis thiamin phosphate synthase complexed with the reaction products thiamin phosphate and pyrophosphate has been determined by multiwavelength anomalous diffraction phasing techniques and refined to 1.25 A resolution. Thiamin phosphate synthase is an alpha/beta protein with a triosephosphate isomerase fold. The active site is in a pocket formed primarily by the loop regions, residues 59-67 (A loop, joining alpha3 and beta2), residues 109-114 (B loop, joining alpha5 and beta4), and residues 151-168 (C loop, joining alpha7 and beta6). The high-resolution structure of thiamin phosphate synthase complexed with its reaction products described here provides a detailed picture of the catalytically important interactions between the enzyme and the substrates. The structure and other mechanistic studies are consistent with a reaction mechanism involving the ionization of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate at the active site to give the pyrimidine carbocation. Trapping of the carbocation by the thiazole followed by product dissociation completes the reaction. The ionization step is catalyzed by orienting the C-O bond perpendicular to the plane of the pyrimidine, by hydrogen bonding between the C4' amino group and one of the terminal oxygen atoms of the pyrophosphate, and by extensive hydrogen bonding and electrostatic interactions between the pyrophosphate and the enzyme.  相似文献   

6.
R K Harrison  R L Stein 《Biochemistry》1990,29(7):1684-1689
Cyclophilin, the cytosolic binding protein for the immunosuppressive drug cyclosporin A, has recently been shown to be identical with peptidyl prolyl cis-trans isomerase [Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F.X. (1989) Nature 337, 476; Takahashi, N., Hayano, T., & Suzuki, M. (1989) Nature 337, 473]. To provide a mechanistic framework for studies of the interaction of cyclophilin with cyclosporin, we investigated the mechanism of the PPI-catalyzed cis to trans isomerization of Suc-Ala-Xaa-cis-Pro-Phe-pNA (Xaa = Ala, Gly). Our mechanistic studies of peptidyl prolyl cis-trans isomerase include the determination of steady-state kinetic parameters, pH and temperature dependencies, and solvent and secondary deuterium isotope effects. The results of these experiments support a mechanism involving catalysis by distortion in which the enzyme uses free energy released from favorable, noncovalent interactions with the substrate to stabilize a transition state that is characterized by partial rotation about the C-N amide bond.  相似文献   

7.
Jia Y  Yuan W  Wodzinska J  Park C  Sinskey AJ  Stubbe J 《Biochemistry》2001,40(4):1011-1019
The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium vinosum, respectively, catalyze the polymerization of beta-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. vinosum synthase suggested that it is structurally homologous to bacterial lipases and allowed identification of active site residues important for catalysis [Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000) Biochemistry 39, 3927-3936]. Sequence alignments between the Class I and III synthases revealed similar residues in the R. eutropha synthase. Site-directed mutants of these residues were prepared and examined using HBCoA and a terminally saturated trimer of HBCoA (sT-CoA) as probes. These studies reveal that the R. eutropha synthase possesses an essential catalytic dyad (C319-H508) in which the C319 is involved in covalent catalysis. A conserved Asp, D480, was shown not to be required for acylation of C319 by sT-CoA and is proposed to function as a general base catalyst to activate the hydroxyl of HBCoA for ester formation. Studies of the [(3)H]sT-CoA with wild-type and mutant synthases reveal that 0.5 equiv of radiolabel is covalently bound per monomer of synthase, suggesting that a dimeric form of the enzyme is involved in elongation. These studies, in conjunction with search algorithms for secondary structure, suggest that the Class I and III synthases are mechanistically similar and structurally homologous, despite their physical and kinetic differences.  相似文献   

8.
蔗糖是自然界中广泛存在的一种天然产物.在植物等生命体中,蔗糖磷酸合酶(Sucrose phosphate synthase,SPS)是蔗糖合成的限速酶.SPS催化合成蔗糖-6-磷酸;蔗糖磷酸酶(Sucrose Phosphatase,SPP)进一步把蔗糖-6-磷酸上的磷酸根水解下来而形成蔗糖.近几十年来关于SPS的研究...  相似文献   

9.
Luk LY  Bunn S  Liscombe DK  Facchini PJ  Tanner ME 《Biochemistry》2007,46(35):10153-10161
Norcoclaurine synthase catalyzes an asymmetric Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. This is the first committed step in the biosynthesis of the benzylisoquinoline alkaloids that include morphine and codeine. In this work, the gene encoding for the Thalictrum flavum norcoclaurine synthase is highly overexpressed in Escherichia coli and the resulting His-tagged recombinant enzyme is purified for the first time. A continuous assay based on circular dichroism spectroscopy is developed and used to monitor the kinetics of the enzymatic reaction. Dopamine analogues bearing a methoxy or hydrogen substituent in place of the C-1 phenolic group were readily accepted by the enzyme whereas those bearing the same substituents at C-2 were not. This supports a mechanism involving a two-step cyclization of the putative iminium ion intermediate that does not proceed via a spirocyclic intermediate. The reaction of [3,5,6-2H]dopamine was found to be slowed by a kinetic isotope effect of 1.7 +/- 0.1 on the value of kcat/KM. This is interpreted as showing that the deprotonation step causing rearomatization is partially rate determining in the overall reaction.  相似文献   

10.
Thiamin phosphate synthase catalyzes the formation of thiamin phosphate from 4-amino-5-(hydroxymethyl)-2-methylpyrimidine pyrophosphate and 5-(hydroxyethyl)-4-methylthiazole phosphate. Several lines of evidence suggest that the reaction proceeds via a dissociative mechanism. The previously determined crystal structure of thiamin phosphate synthase in complex with the reaction products, thiamin phosphate and magnesium pyrophosphate, provided a view of the active site and suggested a number of additional experiments. We report here seven new crystal structures primarily involving crystals of S130A thiamin phosphate synthase soaked in solutions containing substrates or products. We prepared S130A thiamin phosphate synthase with the intent of characterizing the enzyme-substrate complex. Surprisingly, in three thiamin phosphate synthase structures, the active site density cannot be modeled as either substrates or products. For these structures, the best fit to the electron density is provided by a model that consists of independent pyrimidine, pyrophosphate, and thiazole phosphate fragments, consistent with a carbenium ion intermediate. The resulting carbenium ion is likely to be further stabilized by proton transfer from the pyrimidine amino group to the pyrophosphate to give the pyrimidine iminemethide, which we believe is the species that is observed in the crystal structures.  相似文献   

11.
12.
Phytochromobilin (PPhiB) is an open chain tetrapyrrole molecule that functions as the chromophore of light-sensing phytochromes in plants. Derived from heme, PPhiB is synthesized through an open chain tetrapyrrole intermediate, biliverdin IXalpha (BV), in the biosynthesis pathway. BV is subsequently reduced by the PPhiB synthase HY2 in plants. HY2 is a ferredoxin-dependent bilin reductase that catalyzes the reduction of the A-ring 2,3,3(1),3(2)-diene system to produce an ethylidene group for assembly with apophytochromes. In this study, we sought to determine the catalytic mechanism of HY2. Data from UV-visible and EPR spectroscopy showed that the HY2-catalyzed BV reaction proceeds via a transient radical intermediate. Site-directed mutagenesis showed several ionizable residues that are involved in the catalytic steps. Detailed analysis of these site-directed mutants highlighted a pair of aspartate residues central to proton donation and substrate positioning. A mechanistic prediction for the HY2 reaction is proposed. These results support the hypothesis that ferredoxin-dependent bilin reductases reduce BV through a radical mechanism, but their double bond specificity is decided by strategic placement of different proton-donating residues surrounding the bilin substrate in the active sites.  相似文献   

13.
GDP-mannose hydrolase (GDPMH) catalyzes the hydrolysis of GDP-alpha-d-sugars by nucleophilic substitution with inversion at the anomeric C1 atom of the sugar, with general base catalysis by H124. Three lines of evidence indicate a mechanism with dissociative character. First, in the 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP.Tris(+) complex [Gabelli, S. B., et al. (2004) Structure 12, 927-935], the GDP leaving group interacts with five catalytic components: R37, Y103, R52, R65, and the essential Mg(2+). As determined by the effects of site-specific mutants on k(cat), these components contribute factors of 24-, 100-, 309-, 24-, and >/=10(5)-fold, respectively, to catalysis. Both R37 and Y103 bind the beta-phosphate of GDP and are only 5.0 A apart. Accordingly, the R37Q/Y103F double mutant exhibits partially additive effects of the two single mutants on k(cat), indicating cooperativity of R37 and Y103 in promoting catalysis, and antagonistic effects on K(m). Second, the conserved residue, D22, is positioned to accept a hydrogen bond from the C2-OH group of the sugar undergoing substitution at C1, as was shown by modeling an alpha-d-mannosyl group into the sugar binding site. The D22A and D22N mutations decreased k(cat) by factors of 10(2.1) and 10(2.6), respectively, for the hydrolysis of GDP-alpha-d-mannose, and showed smaller effects on K(m), suggesting that the D22 anion stabilizes a cationic oxocarbenium transition state. Third, the fluorinated substrate, GDP-2F-alpha-d-mannose, for which a cationic oxocarbenium transition state would be destabilized by electron withdrawal, exhibited a 16-fold decrease in k(cat) and a smaller, 2.5-fold increase in K(m). The D22A and D22N mutations further decreased the k(cat) with GDP-2F-alpha-d-mannose to values similar to those found with GDP-alpha-d-mannose, and decreased the K(m) of the fluorinated substrate. The choice of histidine as the general base over glutamate, the preferred base in other Nudix enzymes, is not due to the greater basicity of histidine, since the pK(a) of E124 in the active complex (7.7) exceeded that of H124 (6.7), and the H124E mutation showed a 10(2.2)-fold decrease in k(cat) and a 4.0-fold increase in K(m) at pH 9.3. Similarly, the catalytic triad detected in the X-ray structure (H124- - -Y127- - -P120) is unnecessary for orienting H124, since the Y127F mutation had only 2-fold effects on k(cat) and K(m) with either H124 or E124 as the general base. Hence, a neutral histidine rather than an anionic glutamate may be necessary to preserve electroneutrality in the active complex.  相似文献   

14.
TenA catalyzes the hydrolysis of 4-amino-5-aminomethyl-2-methylpyrimidine and participates in the salvage of base-degraded thiamin. Here, we describe mutagenesis of the active site of TenA guided by structures of the enzyme complexed to a substrate analog and to the product. Catalytic roles for each of the active site residues are identified and a mechanism for the reaction is described.  相似文献   

15.
Porphobilinogen synthase (PBG synthase) gene from Pyrobaculum calidifontis was cloned and expressed in E. coli. The recombinant enzyme was purified as an octamer and was found by mass spectrometry to have a subunit Mr of 37676.59 (calculated, 37676.3). The enzyme showed high thermal stability and retained almost all of its activity after incubation at 70 °C for 16 h in the presence of β-mercaptoethanol (β-ME) and zinc chloride. However, in the absence of the latter the enzyme was inactivated after 16 h although it regained full activity in the presence of β-ME and zinc chloride. The protein contained 4 mol of tightly bound zinc per octamer. Further, 4 mol of low affinity zinc could be incorporated following incubation with exogenous zinc salts. The enzyme was inactivated by incubation with levulinic acid followed by treatment with sodium borohydride. Tryptic digest of the modified enzyme and mass spectrometric analysis showed that Lys257 was the site of modification, which has previously been shown to be the site for the binding of 5-aminolevulinic acid giving rise to the propionate-half of porphobilinogen. P. calidifontis PBG synthase was inactivated by 5-chlorolevulinic acid and the residue modified was shown to be the central cysteine (Cys127) of the zinc-binding cysteine-triad, comprising Cys125, 127, 135. The present results in conjunction with earlier findings on zinc containing PBG synthases, are discussed which advocate that the catalytic role of zinc in the activation of the 5-aminolevulinic acid molecule forming the acetate-half of PBG is possible.  相似文献   

16.
Khare G  Kar R  Tyagi AK 《PloS one》2011,6(7):e22441
Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6-9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M. tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M. tuberculosis. In this study, a comparative homology model of M. tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC(50) values ranging from 20-100 μg/ml and two of these exhibited weak inhibition of M. tuberculosis growth with MIC(99) values being 125 μg/ml and 162.5 μg/ml while one compound was identified as a very potent inhibitor of M. tuberculosis growth with an MIC(99) value of 6 μg/ml. This study establishes MtTPS as a novel drug target against M. tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis.  相似文献   

17.
Fox DT  Poulter CD 《Biochemistry》2005,44(23):8360-8368
The mechanism of the reaction catalyzed by 2-C-methyl-d-erythritol 4-phosphate (MEP) synthase from Escherichia coli has been studied by steady-state and single-turnover kinetic experiments for the 1-deoxy-d-xylulose 5-phosphoric acid (DXP) analogues, 1,1,1-trifluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF(3)-DXP), 1,1-difluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF(2)-DXP), 1-fluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF-DXP), and 1,2-dideoxy-d-hexulose 6-phosphate (Et-DXP). CF(3)-DXP, CF(2)-DXP, and Et-DXP were poor inhibitors, most likely because of the increase in steric bulk at C1 of DXP. The three analogues were also poor substrates for the enzyme. In contrast, CF-DXP was a good substrate (k(cat)(CF)(-)(DXP) = 37 +/- 2 s(-)(1), K(m)(CF)(-)(DXP) = 227 +/- 25 microM) for MEP synthase when compared to DXP (k(cat)(DXP) = 29 +/- 1 s(-)(1), K(m)(DXP) = 45 +/- 4 microM). A primary deuterium isotope effect was observed under single-turnover conditions when CF-DXP was incubated with 4S-[(2)H]NADPH ((H)k/(D)k = 1.34 +/-0.01), whereas no isotope effect was observed upon incubation with DXP and 4S-[(2)H]NADPH ((H)k/(D)k = 1.02 +/- 0.02). The reaction did not exhibit burst kinetics for either substrate, indicating that product release is not rate-limiting. These studies suggest that positive charge does not develop at C2 of DXP during catalysis. In addition, the isotope effect with CF-DXP and 4S-[(2)H]NADPH but not DXP indicates that the rearrangement step, which precedes hydride transfer, is rate-limiting for DXP but becomes partially rate-limiting for CF-DXP. Thus, rearrangement appears to be enhanced by substitution of a hydrogen atom in the methyl group of DXP by fluorine. These observations are consistent with a retro-aldol/aldol mechanism for the rearrangement during conversion of DXP to MEP.  相似文献   

18.
Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.  相似文献   

19.
We studied the ability of rat glomerular mesangial cells and their microsomal fractions to incorporate 1-[14C]hexadecanol to glycerophospholipids via an O-alkyl ether linkage and assessed the presence and activity of the required enzyme: alkyl-dihydroxy acetone phosphate synthase. Suspensions of cultured mesangial cells incorporated 1-[14C]hexadecanol to the phosphatidyl ethanolamine and phosphatidyl choline lipid pools, via a bond resistant to acid and base hydrolysis. When cell homogenates or microsomal fractions were incubated with palmitoyl-DHAP and 1-[14C]hexadecanol, alkyl-DHAP and 1-O-alkyl glycerol were formed (alkyl:hexadecyl). The activity of the enzyme responsible for the O-alkyl product formation was calculated to be 2.5 +/- 0.3 and 544 +/- 50 pmoles/min/mg protein for mesangial cell homogenates and mesangial cell microsomes, respectively. These observations provide evidence that mesangial cells may elaborate either linked lipid precursors de novo for the biosynthesis of O-alkyl glycerophospholipids.  相似文献   

20.
SufS is a cysteine desulfurase of the suf operon shown to be involved in iron-sulfur cluster biosynthesis under iron limitation and oxidative stress conditions. The enzyme catalyzes the conversion of L-cysteine to L-alanine and sulfide through the intermediate formation of a protein-bound cysteine persulfide in the active site. SufE, another component of the suf operon, has been previously shown to bind tightly to SufS and to drastically stimulate its cysteine desulfurase activity. Working with Escherichia coli proteins, we here demonstrate that a conserved cysteine residue in SufE at position 51 is essential for the SufS/SufE cysteine desulfurase activity. Mass spectrometry has been used to demonstrate (i). the ability of SufE to bind sulfur atoms on its cysteine 51 and (ii). the direct transfer of the sulfur atom from the cysteine persulfide of SufS to SufE. A reaction mechanism is proposed for this novel two-component cysteine desulfurase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号