首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To investigate the relationship between geographical range size and abundance (population density) in Australian passerines. Location Australia (including Tasmania). Methods We analysed the relationship between range size and local abundance for 272 species of Australian passerines, across the whole order and within families. We measured abundance as mean and maximum abundance, and used a phylogenetic generalized least‐squares regression method within a maximum‐likelihood framework to control for effects of phylogeny. We also analysed the relationship within seven different habitat types. Results There was no correlation between range size and abundance for the whole set of species across all habitats. Analyses within families revealed some strong correlations but showed no consistent pattern. Likewise we found little evidence for any relationship or conflicting patterns in different habitats, except that woodland/forest habitat species exhibit a negative correlation between mean abundance and range size, whilst species in urban habitats exhibit a significant positive relationship between maximum abundance and range size. Despite the general lack of correlation, the raw data plots of range size and abundance in this study occupied a triangular space, with narrowly distributed species exhibiting a greater variation in abundances than widely distributed species. However, using a null model analysis, we demonstrate that this was due to a statistical artefact generated by the frequency distributions for the individual variables. Conclusions We find no evidence for a positive range size‐abundance relationship among Australian passerines. This absence of a relationship cannot be explained by any conflicting effects introduced by comparing across different habitats, nor is it explained by the fact that large proportions of Australia are arid. We speculate that the considerable isolation and evolutionary age of Australian passerines may be an explanatory factor.  相似文献   

2.
Geographic gradients in body size: a clarification of Bergmann's rule   总被引:8,自引:0,他引:8  
1997 marked the sesquicentenary of the publication by Carl Bergmann of the observation that, in general, large-bodied animal species tend to live further north than their small-bodied relatives. This has been dubbed Bergmann's rule in his honour. However, more than 150 years on, we appear to be little closer to a general understanding of the rule, or even to any consensus as to whether it exists. This is due in large part to confusion about the taxonomic level at which the rule is considered to operate, and to the conflation of pattern and mechanism. In this paper, we attempt to resolve this confusion by highlighting its sources, and by providing a definition of Bergmann's rule that is practical and useful, yet that retains the essential features of its original formulation. We conclude by briefly reviewing the mechanisms proposed to explain Bergmann's rule as we define it.  相似文献   

3.
Rarity in the tropics: biogeography and macroecology of the primates   总被引:2,自引:0,他引:2  
Aim To describe rarity and elucidate its biology in a tropical mammalian order, the Primates. Location Africa, Central and South America, Asia, Madagascar. Methods A review of the literature, with some additional analyses using data from the literature. A variety of definitions of rarity are used in order to describe it and to investigate its biology by correlating the degree of rarity with a variety of biological traits indicative of resource use (e.g. size of annual home range), reproductive rate (e.g. birth interval)and specialization (e.g. number of habitat types used). Results Few primate taxa occur outside the tropics, and most taxa are rare (small geographical range size or latitudinal extent, low density or both). Latitudinal extent is narrower at lower latitudes in Africa and Asia, but the potential resultant packing of taxa appears not to explain the taxonomic diversity gradient. Whilst primate species do not show the common, positive density by range size relationship, primate genera show a significant shallow slope, and primate families/subfamilies a strongly positive slope. Rare taxa are specialized, but neither use more resources nor breed more slowly than common taxa. The correlation of rarity and specialization is via geographical range: taxa with small ranges, or small ranges for their density, are specialized, but not taxa at low density. Common taxa are generalized because they consist of more differently specialized subtaxa, not because each subtaxon is generalized. Main conclusions Most primate taxa are rare, in which case most are presumably likely to go extinct. Rare primates are specialized, but do not necessarily use more resources, nor breed more slowly. Specialization as an explanation for rarity appears to work via constriction of range size, not of density. Common primates might be common (large range size) not because subtaxa or individuals are generalized, but because they are composed of more subtaxa. A consequence could be that persistence of even common taxa will depend on conservation of several populations scattered across the taxon's geographical range.  相似文献   

4.
Aim The aim of this study is to test whether Bergmann's rule, a general intraspecific tendency towards larger body size in cooler areas and at higher latitudes, holds for birds throughout the world. Location This study includes information on species of birds from throughout the world. Methods I gathered data on body size variation from the literature and used two general meta‐analytical procedures to test the validity of Bergmann's rule in birds: a modified vote‐counting approach and calculation of overall effect sizes. Related species may show similar body size trends, thus I performed all analyses using nonphylogenetic and phylogenetic methods. I used tests of phylogenetic signal for each data set to decide which type of statistical analysis (nonphylogenetic or phylogenetic) was more appropriate. Results The majority of species of birds (76 of 100 species) are larger at higher latitudes, and in cooler areas (20 of 22 species). Birds show a grand mean correlation coefficient of +0.32 for body size and latitude, and ?0.81 for body size and temperature, both significant trends. Sedentary species show stronger body size trends in some, but not all, analyses. Neither males nor females consistently have stronger body size trends. Additionally, the strength of body size trends does not vary with latitude or body mass. Conclusions Bergmann's rule holds for birds throughout the world, regardless of whether temperature or latitude (as a proxy) is used. Previous studies have suggested that Bergmann's rule is stronger for sedentary than migratory species, males than females and temperate than tropical taxa. I did not find strong support for any of these as general themes for birds, although few studies of tropical taxa have been conducted. The processes responsible for Bergmann's rule remain somewhat of a black box; however, fasting endurance is probably a more important factor than the traditional hypothesis of heat conservation.  相似文献   

5.
Latitudinal shifts in body size of Enallagma cyathigerum (Odonata)   总被引:1,自引:0,他引:1  
Aim Survey of the latitudinal body size pattern for populations of Enallagma cyathigerum (Odonata) across a south‐north transect. Location A transect covering the whole distribution range from south to north across Europe was sampled. Methods Newly emerged adults were collected from five major sites across Europe and one to four localities were sampled within each site. In total 253 adults were collected from fourteen localities. Body size was measured using thorax length, length of right front wing and length of right hind tibia. These body size estimates were thereafter related to latitude and mean temperature in January and July. Results Body size showed a U‐shaped pattern with latitude, being large at low and high latitudes and small at intermediate latitudes. The same U‐shaped pattern was found for mean January and July temperature, with large animals at low and high temperatures. Conclusion The U‐shaped relationship between body size and latitude is suggested to be a combination of two effects: (1) the length of the season favourable for growth and development, and (2) variation in life cycle length with latitude.  相似文献   

6.
Abstract Aim Bergmann's rule, one of the most studied and controversial ecogeographical generalizations, has rarely been tested with observations from high latitudes. We tested the rule using cranial measurements of the muskox [Ovibos moschatus (Zimmerman)], a homeotherm with an extremely northern distribution. We also used these data to describe geographical patterns in the species' dental architecture, an extension of the framework developed from interspecific comparisons. Location Specimens were compiled from arctic Canada, Alaska and Greenland, a latitudinal range of 60° N?83° N. Methods Body size was estimated from principal components analysis (PCA) of five cranial characters from 128 specimens. Mean scores on the first principal component from each locality were regressed against latitude and mean temperature to identify geographical variation in body size; scores on the second principal component were regressed against latitude to assess patterns in dental architecture. Regression analyses of the individual characters were performed as a complement to PCA. Results No latitudinal or climatic trend in body size was observed in either sex. On the other hand, for males, significant latitudinal variation was found for the second PCA axis (r = ?0.434), and the feature which loaded most heavily on it, maxillary tooth row length (r = 0.429). For females, this dental structure also tended to increase with latitude (r = 0.423), but the trend was only marginally significant (P=0.12), perhaps owing to a smaller sample size. Main conclusions The geographically invariant body size of muskoxen failed to support current hypotheses of size variation. Behavioural and physiological adaptations may exempt the muskox from selective pressures underlying these hypotheses. We interpret latitudinal variation in dental architecture as a reflection of a cline in diet, dominated by graminoids at the expense of willows at higher latitudes. This intraspecific geographical trend is a recapitulation of the interspecific framework for large mammalian herbivores.  相似文献   

7.
Aim  To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation.
Location  Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection.
Methods  Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites.
Results  Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions.
Main conclusions  The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.  相似文献   

8.
Aim Geographic variation in body size and heterozygosity were surveyed for discrete populations of the ant lion, Myrmeleon immaculatus DeGeer, collected from the central and northeastern United States. Location Collection sites were located in the central and eastern United States ranging from western Oklahoma to northern New York. Methods We collected 872 M. immaculatus larvae from thirty-four collecting sites. At each site, we randomly sampled ant lion pits and collected between fifteen and fifty-two larvae in total. Larvae were preserved in 95% ETOH for morphological analysis and frozen in a ?80°C freezer for protein electrophoresis. We measured the body size of eighty-five preserved adult M. immaculatus obtained from museum collections using head width as an indicator of body size. Five enzymes [GPI (glucose phosphate isomerase), MDH (malate dehydrogenase), PEP (peptidase), DIA (diaphorase) and SOD (superoxide dismutase)] were used in the heterozygosity analyses. Results Larval and adult body size increased with latitude, but decreased with elevation. Average heterozygosity, measured at five polymorphic loci, also increased significantly with latitude. Minimum temperature variance was the best predictor of body size, whereas precipitation and maximum temperature were the best predictors of heterozygosity. Populations were genetically differentiated from one another and showed a pattern of isolation by distance, as measured by Wright's Fst values and Nei's genetic distances. Main conclusions Sampling artifacts, heat conservation, character displacement, cell-size variation, density-dependent mortality, and differential dispersal probably cannot account for latitudinal variation in ant lion body size. Our results implicate the importance of diurnal photoperiod, which varies with latitude, but not with elevation. Because photoperiod often controls growth, diapause, and metamorphosis, it may be an important determinant of latitudinal clines in body size and life history of insects.  相似文献   

9.
《Current biology : CB》2023,33(9):1677-1688.e6
  1. Download : Download high-res image (146KB)
  2. Download : Download full-size image
  相似文献   

10.
Aim Across a wide variety of organisms, taxa with high local densities (abundance) have large geographical ranges (distributions). We use primatology's detailed knowledge of its taxon to investigate the form and causes of the relationship in, unusually for macroecological analysis, a tropical taxon. Location Africa, Central and South America, Asia, Madagascar. Methods To investigate the form of the density–range relationship, we regressed local density on geographical range size, and also on female body mass, because in the Primates, density correlates strongly with mass. To investigate the biological causes of the relationship, we related (1) abundance (density × range size) and (2) residuals from the density–range regression lines to various measures of (i) resource use, (ii) reproductive rate and (iii) potential specialization. All data are from the literature. Analyses were done at the level of species (n = 140), genera (n = 60) and families/subfamilies (n = 17). We present various levels of results, including for all data, after omission of outlier data, after correction for phylogenetic dependence, and after Bonferroni correction of probabilities for multiple comparisons. Results Regarding the form of the relationship, Madagascar primates are clear outliers (high densities in small ranges). Among the remaining three realms, the relation of density to range is weak or non‐existent at the level of species and genera. However, it is strong, tight and linear at the level of families/subfamilies (r2 = 0.6, F1,10 = 19, P < 0.01). Although among primates, density is very significantly related to mass, at no taxonomic level is range size related to body mass. Consequently, removing the effects of mass makes little to no difference to density–range results. Regarding the biology of the relationship, only traits indicative of specialization are associated with abundance (meaning numbers): rare taxa are more specialized than are abundant taxa. The association is largely via range size, not density. Across families, no traits correlate significantly with the density–range relationship, nor with deviations from it, despite the strength of the relationship at this taxonomic level. Main conclusions We suggest that in macroecology, analysis at taxonomic levels deeper than that of the relatively ephemeral species can be appropriate. We argue that the several purely methodological explanations for the positive density–range size relationship in primates can be rejected. Of the various biological hypotheses, those having to do with specialization–generalization seem the only applicable ones. The fact that the relationship is entirely via range size, not via density, means that while we might have a biology of range size, we do not yet have one of the density–geographical range relationship. It is probably time to search for multivariate explanations, rather than univariate ones. However, we can for the first time, for at least primates, suggest that any association of abundance or range size with specialization is via the number of different subtaxa, not the average degree of specialization of each subtaxon. The implication for conservation is obvious.  相似文献   

11.
A growing body of literature seeks to explain variation in range shifts using species’ ecological and life‐history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. Despite strong theoretical support for species’ traits as predictors of range shifts, empirical evidence from contemporary range shift studies remains limited in extent and consensus. We conducted the first comprehensive review of species’ traits as predictors of range shifts, collecting results from 51 studies across multiple taxa encompassing over 11,000 species’ responses for 54 assemblages of taxonomically related species occurring together in space. We used studies of assemblages that directly compared geographic distributions sampled in the 20th century prior to climate change with resurveys of distributions after contemporary climate change and then tested whether species traits accounted for heterogeneity in range shifts. We performed a formal meta‐analysis on study‐level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit as predictors of range shifts for a subset of 21 studies of 26 assemblages with sufficient data. Range shifts were consistent with predictions based on habitat breadth and historic range limit. However, body size, fecundity, and diet breadth showed no significant effect on range shifts across studies, and multiple studies reported significant relationships that contradicted predictions. Current understanding of species’ traits as predictors of range shifts is limited, and standardized study is needed for traits to be valid indicators of vulnerability in assessments of climate change impacts.  相似文献   

12.
Patterns of ecotypic variation constitute some of the few 'rules' known to modern biology. Here, we examine several well-known ecogeographical rules, especially those pertaining to body size in contemporary, historical and fossil taxa. We review the evidence showing that rules of geographical variation in response to variation in the local environment can also apply to morphological changes through time in response to climate change. These rules hold at various time scales, ranging from contemporary to geological time scales. Patterns of body size variation in response to climate change at the individual species level may also be detected at the community level. The patterns underlying ecotypic variation are complex and highly context-dependent, reducing the 'predictive-power' of ecogeographical rules. This is especially true when considering the increasing impact of human activities on the environment. Nonetheless, ecogeographical rules may help interpret the likely influences of anthropogenic climate change on ecosystems. Global climate change has already influenced the body size of several contemporary species, and will likely have an even greater impact on animal communities in the future. For this reason, we highlight and emphasise the importance of museum specimens and the continued need for documenting the earth's biological diversity.  相似文献   

13.
Aldo Poiani 《Oecologia》1992,92(3):429-441
The hypothesis that cooperative breeding entails a cost in terms of transmission of ectoparasites was tested by a comparative analysis among sympatric Australian passerines. The general trend found using the allometry method and outgroup analysis indicates that contagious ectoparasites are not more common on cooperatively breeding than on non-cooperatively breeding hosts. Body weight, migratory patterns and relative abundance of hosts are factors far more important than cooperative breeding that affect the levels of ectoparasitism in the host genera studies. Ectoparasitism increases with host body weight and relative adundance, while sedentary host genera tended to show less hippoboscid fly diversity than migratory host genera. There is an interaction between breeding system and migratory pattern when relative density of contagious ectoparasites (i.e. mites, ticks and bird lice) is considered: the number of contagious ectoparasites per host is larger on cooperatively breeding host genera than on non-cooperatively breeding host genera among sedentary passerines, but the trend is reversed for migrant passerines.  相似文献   

14.
15.
The singing honeyeater, a nectar-feeding bird, is common throughout most of Australia. There is considerable geographical variation in weight, the heaviest birds (30 g) living at the highest latitudes (35°S) and the lightest birds (19 g) at the lowest latitudes (16°S). Clinal variation in weight is apparently related to climatic factors (e.g. potential evapotranspiration) in accord with Bergmann's rule. The exceptions are populations on islands and peninsulas which are about 13% heavier than those on the adjacent mainland.  相似文献   

16.
1. A positive interspecific relationship between abundance and distribution is widely considered to be one of the most general patterns in ecology. However, the relationship appears to vary considerably across assemblages, from significant positive to significant negative correlations and all shades in between. 2. This variation has led to the suggestion that the abundance-distribution relationship has multiple forms, with the corollary that different patterns may inform about, or have different, causes. However, this variation has never been formally quantified, nor has it been determined whether the observed variation is indicative of sampling error in estimating a single effect or of real heterogeneity in such relationships. Here, we use the meta-analytical approach to assess variation in abundance-distribution relationships, and to test different hypotheses for it. 3. Analysis of 279 relationships found a mean effect size of 0.655, which was both highly significantly different from zero and indicative of a strong positive association between abundance and distribution. However, effect sizes were highly heterogeneous, supporting the contention that this relationship does indeed have multiple forms. 4. Most notably, relationships vary significantly in strength across realms, with the strongest in the marine and intertidal, intermediate relationships for terrestrial and parasitic assemblages, and the weakest relationships in freshwater systems. Effect sizes in all of the aquatic realms are homogeneous, suggesting that realm is an important source of the heterogeneity observed across all studies. We posit that this may be because the different spatial structure of the environment in each realm affects the opportunity for the dispersal of individuals between sites. 5. Some of the remaining heterogeneity in effect sizes for terrestrial assemblages could be explained by partitioning assemblages by habitat, scale, biogeographical region and taxon, but considerable heterogeneity in effect sizes for terrestrial and parasitic assemblages remained unexplained.  相似文献   

17.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

18.
19.
Aim To document patterns in diversity, altitudinal range and body size of freshwater fishes along an elevational gradient in the Yangtze River basin. Location The Yangtze River basin, China. Methods We used published data to compile the distribution, altitudinal range and body size of freshwater fishes. Correlation, regression, clustering and graphical analyses were used to explore patterns in diversity, altitudinal range and body size of freshwater fishes in 100‐m elevation zones from 0 to 5200 m. Results Species richness patterns across the elevational gradient for total, non‐endemic and endemic fishes were different. The ratio of endemics to total richness peaked at mid elevation. Land area on a 500‐m interval scale explained a significant amount of the variation in species richness. Species density displayed two peaks at mid‐elevation zones. The cluster analysis revealed five distinct assemblages across the elevation gradient. The relationship between elevational range size and the midpoint of the elevational range revealed a triangular distribution. The frequency distribution of log maximum standard length data displayed an atypical right‐skewed pattern. Intermediate body sizes occurred across the greatest range of elevation while small and large body sizes possessed only small elevational amplitudes. The size‐elevation relationship between the two major families revealed a very strong pattern of body size constraint among the Cobitidae with no corresponding elevational constraint and a lot of body size and elevational diversification among the Cyprinidae. Main conclusion The data failed to support either Rapoport's rule or Bergmann's rule.  相似文献   

20.
Several studies have uncovered interspecific latitudinal gradients in abundance (population density) such that tropical species tend to be, on average, less abundant than species at higher latitudes. The causes of this relationship remain poorly studied, in contrast to the relative wealth of literature examining the relationship to latitude of other variables such as range size and body mass. We used a cross-species phylogenetic comparative approach and a spatial approach to examine three potential determining factors (distribution, reproductive output and climate) that might explain why abundance correlates with latitude, using data from 54 species of honeyeaters (Meliphagidae) in woodland environments in eastern Australia. There is a strong positive correlation between mean abundance and latitude in these birds. Reproductive output (clutch size) was positively linked to both abundance and latitude, but partial correlation analysis revealed that clutch size is not related to abundance once the effects of latitude are removed. A subsequent multiple regression model that also considered range size, clutch size and body mass showed that latitude is the only strong predictor of abundance in honeyeaters. In the separate spatial analysis, the climatic variables that we considered (temperature, rainfall and seasonality) were all strongly linked to latitude, but none served as a better predictor of abundance than latitude per se, either individually or collectively. The most intriguing result of our analyses was that the cross-species latitudinal pattern in abundance was not evident within species. This suggests an intrinsic cause of the pattern of ‘rarity in the tropics’ in Australian honeyeaters. We suggest that evolutionary age may provide a key to understanding patterns of abundance in these birds.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号