首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 This article presents a computational model of early visual information processing that attempts to account for the central performance drop (CPD) in texture segmentation. CPD is the finding that detection performance on short stimulus displays of line textures using orientation differences to set off the target is not maximal at the foveal center but in parafoveal areas. A comparison between a simulation and psychophysical experimental data supported the assumption that the CPD may be explained by properties of spatial frequency channels whose band-pass filter characteristics are not constant over the retina but differ with eccentricity in a defined manner. The model provided satisfactory predictions of experimental data based on densely or widely spaced line elements in texture fields. It is concluded that preattentive texture analysis might be performed by a relatively small number of simple spatial filters. Received: 14 November 1996 / Accepted in revised form: 3 June 1997  相似文献   

2.
 Texture-discrimination algorithms have often been tested on images containing either mosaics of synthetic textures or artificially created mosaics of real textures – in any case, images in which most of the changes in intensity can be ascribed to the textures themselves. However, real images are not formed like this and may contain steep gradations in intensity which have nothing to do with local texture, such as those caused by incident shadows. A texture discrimination algorithm based on linear filters can fail in the presence of these strong gradations, as they may easily contain an order of magnitude more energy than the gradations in intensity due to texture in the image per se. In these cases, the mechanism may become responsive only to strong luminance effects, and not to texture. I have found that good performance on natural images containing texture can only be obtained from a filter-based texture detection scheme if it includes a stage which attempts to bring large intensity gradients within bounds. The exact nature of the best precompensator appears to depend somewhat on the way the filter outputs are processed. The fit to psychophysical data and the implications for more detailed models of human texture processing will be discussed. Received: 3 May 1993/Accepted in revised form: 7 June 1993  相似文献   

3.
Recent results have shown that texture discrimination is an asymmetrical process; texture A within texture B may be much easier to detect than texture B within texture A. Two questions regarding discrimination asymmetries are addressed: (i) what sorts of textural properties are associated with discrimination asymmetries; and (ii) what sort of architecture would yield asymmetries. Two experiments show that discrimination asymmetries obtain when textures comprise circles of different sizes (large circles are easier to detect in small than vice versa) and when circles differ only in the regularity of their placement (irregularly placed circles are easier to detect in a background of regularly placed circles than vice versa). A plausible account of texture discrimination would involve the decomposition of images via a set orientation and scale selective filters followed by a second layer of filtering to detect energy differences between adjacent regions in the original convolutions. Discrimination asymmetries provide prima facie evidence against such a model because it involves only local measurements and comparisons. We propose that discrimination asymmetries are elegantly explained if it is assumed that the responses of the orientation and scale selective filters are normalized by the degree to which similarly tuned operators are responding elsewhere in the image; viz., global normalization of filter responses. However, there are cases where such global normalization is not required to explain asymmetrical discrimination.  相似文献   

4.
In some circumstances, texture discrimination performance peaks in the parafovea rather than at the fovea. Kehrer (1987) referred to this phenomenon as the central performance drop (CPD). In most studies showing the CPD, task performance has been limited by a backward mask. Morikawa (2000) has argued that in these studies the backward mask was critical to the emergence of the CPD. In three studies we use textures comprising left and right oblique line segments and limit performance by manipulating the orientation variability within the foreground and background textures. Using this method we demonstrate that significant CPDs emerge whether or not there is a backward mask. We conclude that in past studies of the CPD the backward mask functioned primarily as a source of spatial noise and that its temporal relation to the texture display is not critical to the emergence of the CPD.  相似文献   

5.
The human visual system uses texture information to automatically, or pre-attentively, segregate parts of the visual scene. We investigate the neural substrate underlying human texture processing using a computational model that consists of a hierarchy of bi-directionally linked model areas. The model builds upon two key hypotheses, namely that (i) texture segregation is based on boundary detection--rather than clustering of homogeneous items--and (ii) texture boundaries are detected mainly on the basis of a large scenic context that is analyzed by higher cortical areas within the ventral visual pathway, such as area V4. Here, we focus on the interpretation of key results from psychophysical studies on human texture segmentation. In psychophysical studies, texture patterns were varied along several feature dimensions to systematically characterize human performance. We use simulations to demonstrate that the activation patterns of our model directly correlate with the psychophysical results. This allows us to identify the putative neural mechanisms and cortical key areas which underlie human behavior. In particular, we investigate (i) the effects of varying texture density on target saliency, and the impact of (ii) element alignment and (iii) orientation noise on the detectability of a pop-out bar. As a result, we demonstrate that the dependency of target saliency on texture density is linked to a putative receptive field organization of orientation-selective neurons in V4. The effect of texture element alignment is related to grouping mechanisms in early visual areas. Finally, the modulation of cell activity by feedback activation from higher model areas, interacting with mechanisms of intra-areal center-surround competition, is shown to result in the specific suppression of noise-related cell activities and to improve the overall model capabilities in texture segmentation. In particular, feedback interaction is crucial to raise the model performance to the level of human observers.  相似文献   

6.
A crucial insight into handwriting dynamics is embodied in the idea that stable, robust handwriting movements correspond to attractors of an oscillatory dynamical system. We present a phase dynamic model of visuomotor performance involved in copying simple oriented lines. Our studies on human performance in copying oriented lines revealed a systematic error pattern in orientation of drawn lines, i.e., lines at certain orientation are drawn more accurately than at other values. Furthermore, human subjects exhibit “flips” in direction at certain characteristic orientations. It is argued that this flipping behavior has its roots in the fact that copying process is inherently ambiguous—a line of given orientation may be drawn in two different (mutually opposite) directions producing the same end result. The systematic error patterns seen in human copying performance is probably a result of the attempt of our visuomotor system to cope with this ambiguity and still be able to produce accurate copying movements. The proposed nonlinear phase-dynamic model explains the experimentally observed copying error pattern and also the flipping behavior with remarkable accuracy.  相似文献   

7.
 The cereal cyst nematode (CCN), Heterodera avenae Woll., is an economically damaging pest of barley in many of the world’s cereal-growing areas. The development of CCN-resistant cultivars may be accelerated through the use of molecular markers. A number of resistance genes against the pest are well known; one of them, the single dominant Ha 2 resistance gene, has been shown to be effective against the Australian pathotype and maps to chromosome 2 of barley. Segregation analysis identified two restriction fragment length polymorphism (RFLP) markers flanking the resistance gene in two doubled-haploid populations of barley. AWBMA 21 and MWG 694 mapped 4.1 and 6.1 cM respectively from the Ha 2 locus in the Chebec×Harrington cross and 4.0 and 9.2 cM respectively in the Clipper×Sahara cross. Analysis of a further seven sources of CCN resistance in the form of near-isogenic lines (NILs) indicates that all available sources of resistance to the Australian pathotype of CCN in barley represent the Ha 2 locus. Received: 5 December 1996 / Accepted: 20 December 1996  相似文献   

8.
Control model of human stance using fuzzy logic   总被引:2,自引:0,他引:2  
 A control model of human stance is proposed based on knowledge from behavioral experiments and physiological systems. The proposed model is based on the control of global variables specific to body orientation and alignment, rather than on the control of the body’s center of mass within the base of support. Furthermore, the proposed control model is not based on purely inverted pendulum body mechanics where only motion at one joint is controlled, as for instance the ankle. In the proposed model, the degrees of freedom are controlled by using reciprocal and synergistic muscle actions at multiple joints. The control model is based on three sets of different global variables which act in parallel: (1) limb length and its derivative, (2) limb orientation and its derivative, and (3) trunk attitude and its derivative. An important feature of the control model is the use of fuzzy logic, which enables us to model experimental findings and physiological knowledge in a meaningful and explicit way using fuzzy if-then rules. In the control model, 36 fuzzy if-then rules are implemented and applied using a four-linked segment model consisting of a trunk, thigh, shank and foot. Uni- and biarticular limb muscles and trunk muscles are represented as torque actuators at each individual joint. In the model, three sets of global variables act in parallel and make corrective and coordinated responses to internal, self-induced perturbations. The data show that the use of global variables and fuzzy logic successfully enables us to model human standing with sway about a point of equilibrium. Small changes in, for example, total body sway are comparable to those seen during natural sway in human stance. The selected controllers—limb length, limb orientation and trunk attitude—seem to be appropriate for human stance control. Received: 30 October 1996/Accepted in revised form: 7 April 1997  相似文献   

9.
The stochastic nature of cell surface receptor-ligand binding is known to limit the accuracy of detection of chemoattractant gradients by leukocytes (11, 12), thus limiting the orientation ability that is crucial to the chemotactic response in host defense. The probabilistic cell orientation model of Lauffenburger (11) is extended here to assess the consequences of recently discovered receptor phenomena: “down-regulation” of total surface receptor number, spatial asymmetry of surface receptors, and existence of a higher-affinity receptor subpopulation. In general, a reduction in orientation accuracy is predicted by inclusion of these phenomena. An orientation signal based on a simple model of chemosensory adaptation (i.e., a spatial difference inrelative receptor occupancy) is found to be functionally different from the signal suggested by an experimental correlation (i.e., a spatial difference inabsolute receptor occupancy). However, in the context of receptor “signal noise,” the signal based on adaptation yields predictions in better qualitative agreement with the experimental orientation data of Zigmond (10). From this cell orientation model we can estimate the effective timeaveraging period required for noise diminution to a level allowing orientation predictions to match observed levels. This time-averaging period presumably reflects the time constant for receptor signal transduction and locomotory response.  相似文献   

10.
11.
 Neurons of the rat spinal cord were stained using the Golgi impregnation method. Successfully impregnated neurons from laminae II, III, and VI were subjected to fractal and nonfractal analyses. Fractal analysis was performed using length-related techniques. Since an application of fractal methods to the analysis of dendrite arbor structures requires caution, we adopted as appropriate a nonfractal method proposing a generalized power-law model with two main nonfractal parameters: (i) the anfractuosity, characterizing the degree of dendritic deviation from straight lines; and (ii) an estimate of the total length of arbor dendrites. The anfractuosity can distinguish between two sets of drawings where the fractal methods failed. We also redefine some basic concepts of fractal geometry, present the ruler-counting method, and propose a new definition of fractal dimension. Received: 5 February 2002 / Accepted: 25 June 2002 Acknowledgement. We thank Ing. Dejan Ristanović for preparing the computer program used in this study. Correspondence to: D. Ristanović (e-mail: dusan@ristanovic.com, Tel.: +381-11-3615767)  相似文献   

12.
In electrophysiological and psychophysical experiments, we investigated mechanisms of the visual system underlying local and global texture processing. Textures included rectangular matrixes composed of Gabor patches (sine wave grating windowed by a Gaussian envelope). Orientation of each grating varied from 0 to 165 degrees with the step of 15 degrees. Matrixes differed by the amount of Gabor patches with vertical or horizontal orientation. The observers' task was to discriminate the dominant orientation. The advantage of such stimuli involved a possibility to calculate global statistics of the textures, which we considered as the difference between whole amount of vertical and horizontal orientations in the stimulus irrespective of their location. The local statistics was calculated as relative amount of spatially organized nearby gratings (i. e. collinear contours). The subjects' accuracy was low in discriminating less organized textures and gradually improved with the amount of vertically of horizontally oriented Gabor patches, while the reaction time decreased. Visual evoked potentials (VEPs) recorded from occipital lobes revealed different dependencies of their components' magnitude on the amount of equally oriented gratings. Amplitude of the late positive component P3 with latency 400 ms directly depended on the texture discriminability, and N2 wave with latency 180 ms had an S-like dependence. Opposite to that, the magnitude of P2 wave with latency 260 ms was maximal in response to less organized textures and gradually decreased with the amount of equally oriented gratings. The dependencies received were compared with the textures' statistics. Data analysis allowed us to suppose that, in the conditions of our experimental paradigm, two mechanisms were involved in discrimination of the textures--the local and the global processing. We believe that by recording VEPs one can separately investigate activity of these two processes.  相似文献   

13.
Band-spectrum noise has been shown to suppress the visual perception of printed letters. The suppression exhibits a specific dependence on the spatial frequency of the noise, and the frequency domain of most effective inhibition has been related to the size of the letters. In this paper, we address two important questions that were left open by previous studies: (1) Is the observed effect specific to text, and which parameters determine the domain of most effective suppression? (2) What is the origin of the effect in terms of underlying neural processes? We conduct a series of psychophysical experiments that demonstrate that the frequency domain of most effective inhibition depends on the stroke width of the letter rather than on the letter size. These experiments also demonstrate that the effect is not specific to the recognition of letters but also applies to other objects and even to single bars. We attribute the observed effect to nonclassical receptive field (non-CRF) inhibition in visual area V1. This mechanism has previously been suggested as the possible origin of various other perceptual effects. We introduce computational models of two types of cell that incorporate non-CRF inhibition, which are based on Gabor energy filters extended by surround suppression of two kinds: isotropic and anisotropic. The computational models confirm previous qualitative explanations of perceptual effects, such as orientation contrast pop-out, reduced saliency of lines embedded in gratings, and reduced saliency of contours surrounded by textures. We apply the computational models to the images used in the psychophysical experiments. The computational results show a dependence of the inhibition effect on the spatial frequency of the noise that is similar to the suppression effect measured in the psychophysical experiments. The experimental results and their explanation give further support to the idea of a possible functional role of non-CRF inhibition in the separation of contour from texture information and the mediation of object contours to higher cortical areas.  相似文献   

14.
 The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345–3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broad-band anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system – stereopsis and motion – has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with anti-correlated stimuli, in accordance with human psychophysics. Thus, the key features of the experimental data can be reproduced assuming that the motion system experiences more effective noise than the stereoscopy system and imposes a less stringent preference for small disparities. Received: 2 March 2001 / Accepted in revised form: 5 July 2001  相似文献   

15.
I consider how structure is derived from texture containing changes in orientation over space, and propose that multi-local orientation variance (the average orientation variance across a series of discrete images locales) is an estimate of the degree of organization that is useful both for spatial scale selection and for discriminating structure from noise. The oriented textures used in this paper are Glass patterns, which contain structure at a narrow range of scales. The effect of adding noise to Glass patterns, on a structure versus noise task (Maloney et al., 1987), is compared to discrimination based on orientation variance and template matching (i.e. having prior knowledge of the target's orientation structure). At all but very low densities, the variance model accounts well for human data. Next, both models' estimates of tolerable orientation variance are shown to be broadly consistent with human discrimination of texture from noise. However, neither model can account for subjects' lower tolerance to noise for translational patterns than other (e.g. rotational) patterns. Finally, to investigate how well these structural measures preserve local orientation discontinuities, I show that the presence of a patch of unstructured dots embedded in a Glass pattern produces a change in multi-local orientation variance that is sufficient to account for human detection (Hel Or and Zucker, 1989). Together, these data suggest that simple orientation statistics could drive a range of 'texture tasks', although the dependency of noise resistance on the pattern type (rotation, translation, etc.) remains to be accounted for.  相似文献   

16.
Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1–PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.  相似文献   

17.
Psychophysical experiments on human observers and physiological measurements on Pacinian corpuscles (PCs) isolated from cat mesentery were performed to explain certain discrepancies in the psychophysical—physiological model (Bolanowski et al., 1988) for the sense of touch in the vibrotactle Pacinian (P) channel. The model was based on correlations among the psychophysical frequency response obtained on human glabrous skin and physiological frequency-response functions measured on two PC preparations: PC fibers innervating human glabrous skin (Johansson et al., 1982) and PCs isolated from cat mesentery. The three frequency-response functions were qualitatively similar. However, the low-frequency slope for the human PC fibers differed from the slopes for the psychophysical and cat mesentery PC functions by being 3 dB/octave less steep. This discrepancy can be explained theoretically by differences in methodology involving the effect of stimulus duration and the property of temporal summation known to exist in the P channel (i.e., a 3-dB increase in sensitivity per doubling of stimulus duration). To test this, experiments were performed using two methods of stimulation: (1) a constant stimulus duration for different test frequencies, as generally used in this laboratory; and (2) a constant number of stimulus cycles (n = 5) for each test frequency as used by Johansson et al. The method of least squares was used to calculate the low-frequency (50 to 150-Hz) slopes of individual psychophysical and physiological functions. The mean slopes that resulted from using the two methods of stimulation were consistent with the theoretical expectations.  相似文献   

18.
 We developed a stage-structured model to describe optimal energy allocation among growth, reproduction, and survival. Our model includes stochastic fluctuations in survival rate at age 0 but constant survival rate at older ages. Many mammals and birds cease to grow after maturity (i.e., determinate growth), whereas organisms in a number of other taxa grow beyond maturation (i.e., indeterminate growth). We discuss the conditions under which each of the following strategies is optimal: (I) semelparity, (II) iteroparity with determinate growth, and (III) iteroparity with indeterminate growth. Our model demonstrates that iteroparity with indeterminate growth is selected for when a nonlinear relationship exists between weight and energy production; this strategy is also often selected for in stochastic environments, even with a linear relationship between weight and energy production. The optimal strategy in stochastic environments is to maximize the long-term population growth rate, which does not correspond with maximization of total fecundity. The optimal life history is determined by a balance between spreading a risk and increasing the number of offspring. Our model suggests that optimal life history strategy depends on the magnitude of environmental fluctuations, the advantage of investing in growth, the cost of survival, and the nonlinearity between weight and energy production. Received: February 20, 2002 / Accepted: September 20, 2002 Acknowledgments We thank Drs. Y. Matsumiya, K. Morita, K. Shirakihara, and Y. Watanabe for encouragement and helpful advice. We also thank the responsible editor and anonymous reviewers for helpful comments. This work was supported by a Japan Society for the Promotion of Science grant to H.M. Correspondence to:Y. Katsukawa  相似文献   

19.
A problem confronted by visual systems is that of discriminating textures. It appears that a recently described class of orientation-tuned neurones in the bee brain embody properties of mechanisms used by humans to discriminate complex textures. In particular these mechanisms would permit bees to discriminate a large range of textures by giving bees access to information related to higher-order correlations between texture elements. To determine if bees can exploit such textural information we have conducted behavioural experiments employing iso-dipole textures, that statistically speaking, differ from binary noise textures, and each other, only in their third-order correlation functions. While these textures are not themselves of any ethological significance their special properties permit us to show that bees can potentially use a very large palette of textures to classify textured objects. In electrophysiological experiments we demonstrate the requisite contrast sign invariance (rectification) of the orientation-selective neurones' responses and discuss other similarities of these neurones' responses to models accounting for human texture discrimination. Accepted: 7 October 1998  相似文献   

20.
Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high‐pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:765–774, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号