首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arabidopsis and most other Brassicaceae produce an elongated inflorescence of mainly ebracteate flowers. However, the early-flowering species violet cress (Jonopsidium acaule) and a handful of other species produce flowers singly in the axils of rosette leaves. In Arabidopsis the gene LEAFY (LFY) is implicated in both the determination of flower meristem identity and in the suppression of leaves (bracts) that would otherwise subtend the flowers. In this study we examined the role of LFY homologs in the evolution of rosette flowering in violet cress. We cloned two LFY homologs, vcLFY1 and vcLFY2, from violet cress. Their exon sequences show ~90% nucleotide similarity with Arabidopsis LFY and 99% similarity to each other. We used in situ hybridization to study vcLFY expression in violet cress. The patterns were very similar to LFY in Arabidopsis except for stronger expression in the shoot apical meristem outside of the region of flower meristem initiation. It is possible that the relatively diffuse expression of vcLFY contributes to the lack of bract suppression in violet cress. Additionally, the earliest flowers produced by violet cress express vcLFY, suggesting that accelerated flowering in violet cress could also result from changes in the regulation of vcLFY.  相似文献   

3.
4.
5.
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.  相似文献   

6.
7.
为研究拟南芥成花调控基因LFY,我们采用RT-PCR方法分离克隆了三种选择性剪接的片段,分别命名为LFY1239,LFY1263和LFY1275。序列分析表明LFY1263包含一个大小为1 263bp的开放阅读框,与之前报道的LFY基因片段大小相同,而LFY1239在第一外显子的3′端缺失了36bp,LFY1275在第一内含子的3′末端插入了12bp。对几种片段表达部位的分析显示,LFY1239只能在营养生长期的莲座叶中表达,而LFY1263和LFY1275在营养生长期和花期的花器官和莲座叶中都可以检测到,并且,LFY1263呈现出主导地位,LFY1275与LFY1263表达的比例表现为花器官高于莲座叶,该比例的变化可能预示着与成花调控有关。  相似文献   

8.
An allelic series of the novel argonaute mutant (ago1-1 to ago1-6) of the herbaceous plant Arabidopsis thaliana has been isolated. The ago1 mutation pleotropically affects general plant architecture. The apical shoot meristem generates rosette leaves and a single stem, but axillary meristems rarely develop. Rosette leaves lack a leaf blade but still show adaxial/abaxial differentiation. Instead of cauline leaves, filamentous structures without adaxial/abaxial differentiation develop along the stem and an abnormal inflorescence bearing infertile flowers with filamentous organs is produced. Two independent T-DNA insertions into the AGO1 locus led to the isolation of two corresponding genomic sequences as well as a complete cDNA. The AGO1 locus was mapped close to the marker mi291a on chromosome 1. Antisense expression of the cDNA resulted in a partial mutant phenotype. Sense expression caused some transgenic lines to develop goblet-like leaves and petals. The cDNA encodes a putative 115 kDa protein with sequence similarity to translation products of a novel gene family present in nematodes as well as humans. No specific function has been assigned to these genes. Similar proteins are not encoded by the genomes of yeast or bacteria, suggesting that AGO1 belongs to a novel class of genes with a function specific to multicellular organisms.  相似文献   

9.
Zygotic embryos of three Arabidopsis thaliana (L.) Heynh. mutants lacking an embryonic shoot apical meristem (SAM), shoot meristemless (stm), wuschel (wus) and zwille/pinhead (zll/pnh) were used as explants to establish embryogenic cell cultures. Somatic embryos of all three mutants showed the same mutant phenotypes as their zygotic equivalents. These results provide genetic evidence that the developmental program of somatic and zygotic embryos is indistinguishable. They also suggest that a functional SAM is not required for somatic embryogenic cell formation in Arabidopsis.  相似文献   

10.
11.
This report describes the characterisation of ATHB16, a novel Arabidopsis thaliana homeobox gene, which encodes a homeodomain-leucine zipper class I (HDZip I) protein. We demonstrate that ATHB16 functions as a growth regulator, potentially as a component in the light-sensing mechanism of the plant. Endogenous ATHB16 mRNA was detected in all organs of Arabidopsis, at highest abundance in rosette leaves. Reduced levels of ATHB16 expression in transgenic Arabidopsis plants caused an increase in leaf cell expansion and consequently an increased size of the leaves, whereas leaf shape was unaffected. Transgenic plants with increased ATHB16 mRNA levels developed leaves that were smaller than wild-type leaves. Therefore, we suggest ATHB16 to act as a negative regulator of leaf cell expansion. Furthermore, the flowering time response to photoperiod was increased in plants with reduced ATHB16 levels but reduced in plants with elevated ATHB16 levels, indicating that ATHB16 has an additional role as a suppressor of the flowering time sensitivity to photoperiod in wild-type Arabidopsis. As deduced from the response of transgenic plants with altered levels of ATHB16 expression in hypocotyl elongation assays, the gene may act to regulate plant development as a mediator of a blue light response.  相似文献   

12.
Shoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life.  相似文献   

13.
Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.  相似文献   

14.
15.
In Arabidopsis, inflorescence stem formation is a critical process in phase transition from the vegetative to the reproductive state. Although inflorescence stem development has been reported to depend on the expression of a variety of genes during floral induction and repression, little is known about the molecular mechanisms involved in the control of inflorescence stem formation. By activation T-DNA tagging mutagenesis of Arabidopsis, a dominant gain-of-function mutation, eve1-D (eternally vegetative phase1-Dominant), which has lost the ability to form an inflorescence stem, was isolated. The eve1-D mutation exhibited a dome-shaped primary shoot apical meristem (SAM) in the early vegetative stage, similar to that seen in the wild-type SAM. However, the SAM in the eve1-D mutation failed to transition into an inflorescence meristem (IM) and eventually reached senescence without ever leaving the vegetative phase. The eve1-D mutation also displayed pleiotropic phenotypes, including lobed and wavy rosette leaves, short petioles, and an increased number of rosette leaves. Genetic analysis indicated that the genomic location of the EVE1 gene in Arabidopsis thaliana corresponded to a bacterial artificial chromosome (BAC) F4C21 from chromosome IV at ~17cM which encoded a novel ubiquitin family protein (At4g03350), consisting of a single exon. The EVE1 protein is composed of 263 amino acids, contains a 52 amino acid ubiquitin domain, and has no glycine residue related to ubiquitin activity at the C-terminus. The eve1-D mutation provides a way to study the regulatory mechanisms that control phase transition from the vegetative to the reproductive state.  相似文献   

16.
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.  相似文献   

17.
Whereas most Brassicaceae produce flowers on an elongated inflorescence, a few lineages produce flowers directly from the vegetative rosette on elongated pedicels. Knowing the extent to which independent origins of rosette flowering involve the same developmental and genetic mechanisms could clarify the constraints acting on plant architectural evolution. Prior work in Idahoa, Ionopsidium, and Leavenworthia suggested that changes in the activity or expression of the flower meristem identity gene, LEAFY (LFY), played a role in all three origins of rosette flowering. Here we studied the developmental morphology of L. crassa and immunolocalization of LFY protein in Leavenworthia and Ionopsidium to further compare independent origins of rosette flowering. Leavenworthia crassa differs from Ionopsidium and Idahoa in producing ebracteate flowers. Flowers are, however, associated with "squamules," here interpreted as stipules of a cryptic bract. LFY was detected in L. crassa flower primordia but not in inflorescence meristems. In contrast, the rosette flowering Io. acaule accumulated LFY protein in the inflorescence meristem, whereas its inflorescence-flowering close relative, Io. prolongoi, did not. Thus, although different cases of rosette flowering likely entailed modifications of the same meristem identity program, distinct developmental genetic mechanisms appear to be involved in each case.  相似文献   

18.
Leavenworthia crassa is a rosette flowering species that differs from inflorescence flowering species, such as Arabidopsis thaliana, in having elongated pedicels and shortened interfloral internodes on the main axis. Based on previous experiments, we hypothesized that changes to the L. crassa TFL1 ortholog, LcrTFL1, were important in the evolution of rosette flowering. We isolated LcrTFL1 and introduced a genomic construct into tfl1 mutant A. thaliana plants. We also generated and analyzed EGFP-LcrTFL1 reporter-fusion lines, and LcrTFL1/LcrLFY doubly transgenic lines. The transgene rescued the mutant defects, but manifested gain-of-function phenotypes. However, LcrTFL1 lines differed from 35S:TFL1 lines in several regards. Defects in floral meristem identity establishment were observed, as was the production of flowers with extra petals. We also noted features that resemble rosette flowering: LcrTFL1 lines produced significantly shorter interfloral internodes and significantly longer pedicels than either wild-type or 35S:TFL1 plants. Our data show that there are substantive differences in the regulation and/or function of TFL1 orthologs between A. thaliana and L. crassa. These may reflect changes that occurred during the evolution of rosette flowering in Leavenworthia, but, if so, our results show that additional, as-yet-unidentified genes were involved in this instance of architectural evolution.  相似文献   

19.
Most angiosperm flowers are tightly integrated, functionally bisexual shoots that have carpels with enclosed ovules. Flowering plants evolved from within the gymnosperms, which lack this combination of innovations. Paradoxically, phylogenetic reconstructions suggest that the flowering plant lineage substantially pre-dates the evolution of flowers themselves. We provide a model based on known gene regulatory networks whereby positive selection on a single, partially redundant gene duplicate 'trapped' the ancestors of flower-bearing plants into the condensed, bisexual state approximately 130 million years ago. The LEAFY (LFY) gene of Arabidopsis encodes a master regulator that functions as the main conduit of environmental signals to the reproductive developmental program. We directly link the elimination of one LFY paralog, pleiotropically maintained in gymnosperms, to the sudden appearance of flowers in the fossil record.  相似文献   

20.
We have created transgenic Arabidopsis plants in which a gene encoding the cell-autonomous diphtheria toxin A chain (DT-A) was expressed under the control of the LEAFY (LFY) promoter. This promoter is active both in emerging leaf primordia and young flowers, with the highest activity in flowers. The majority of LFY::DT-A plants had normal vegetative development but lacked flowers, demonstrating that relatively widespread activity of a promoter does not exclude its possible use for ablating selected tissues, as long as differences in activity levels between different tissues are significant. We also found that flowers were replaced by empty bracts in LFY::DT-A plants, suggesting that flower-derived signals normally suppress bract development in Arabidopsis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号