首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

2.
3.
This study describes the localization of the U2 small nuclear RNA (snRNA) and the major U snRNA group ribonucleoproteins (snRNPs) during bovine preimplantation development. In vitro maturation, fertilization, and oviductal epithelial cell coculture methods were employed to produce several developmental series totalling over 2,000 preimplantation-stage bovine oocytes and embryos. These oocytes and preimplantation embryos were processed for in situ hybridization, immunofluorescence and Northern blotting methods. The U2 snRNA and the major U group snRNPS were localized initially over the germinal vesicle (GV) of preovulatory oocytes but following GV breakdown were released throughout the ooplasm. They subsequently reassociated with both pronuclei during fertilization. From the two-cell to the blastocyst stages, the U2 snRNA and U snRNPs were localized to the interphase nucleus of each blastomere. The levels of U2 snRNA throughout bovine preimplantation development were determined by probing a Northern blot containing total RNA isolated from the following preimplantation bovine embryo stages: one to two cell, eight to 16 cell, early morula (greater than 32 cell), and late morula/early blastocysts. The levels of U2 snRNA remained constant between the one-cell and eight- to 16-cell bovine embryo stages but increased 4.4-fold between the eight- to 16-cell stage and the late morula/early blastocyst stages. The results suggest that a maternal pool of snRNAs is maintained in mammalian preimplantation embryos regardless of the duration of maternal control of development.  相似文献   

4.
Investigations were conducted to quantitate polyadenylic acid and estimate the synthesis of polyadenylated RNA in mouse embryos at several stages of preimplantation development. Poly(A) was assayed by molecular hybridization of total embryonic RNA with [3H]polyuridylic acid. The mean values of poly(A) in the ovulated oocytes and in the one-cell, two-cell, and blastocyst stages of the embryo were 1.9, 1.6, 0.68, and 3.8 pg, respectively. Synthesis of polyadenylated RNA was estimated by affinity chromatography of [3H]uridine-labeled embryo RNA on oligo(dT)-cellulose. The proportions of newly synthesized RNA bound by oligo(dT)-cellulose at the 2-cell, 8- to 16-cell, and blastocyst stages were 6.7, 3.5, and 3.3%, respectively. These results suggest that significant quantities of maternal mRNA are present during early development of the mouse, but that polyadenylation of RNA transcribed from the embryonic genome occurs as early as the two-cell stage.  相似文献   

5.
One-cell hamster embryos placed in culture have always shown a complete block to development at the two-cell stage. In a preliminary study using a chemically defined culture medium containing 20 amino acids (HECM-1), many one-cell embryos were able to escape the "two-cell block" and develop to the four-cell stage. Use of a simpler formulation containing only the amino acids hypotaurine and glutamine revealed marked inhibitory and stimulatory effects of adding the other amino acids. In the first experiment, 19 amino acids were separately examined for effects on one-cell embryo development. Six amino acids (phenylalanine, valine, isoleucine, tyrosine, tryptophan, and arginine) inhibited embryo development (reduced mean cell number; MCN), and three others (glycine, cystine, and lysine) stimulated development (increased MCN), compared with basic medium containing only glutamine and hypotaurine (low control). When the responses with the six inhibitory amino acids were totalled, only 3 of 185 (2%) one-cell embryos reached the six-or seven-cell stage compared to a total of 15 of 76 (20%) embryos that developed to these stages using the three stimulatory amino acids. When tested together in a second experiment, the six inhibitory amino acids significantly reduced the MCN, from 4.28 +/- 0.44 (low control) to 3.71 +/- 0.55. In this group, 17 of 117 (15%) of one-cell embryos reached more than four-cell and only 4 of 117 (3%) reached six- or 7-cell stages, compared with 39 of 117 (33%) and 12 of 117 (10%), respectively, for the basal medium group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Preliminary observations showed that one-cell embryos from random-bred MF1 mice avoid cleavage arrest at the two-cell stage ('in vitro two-cell block') when cultured in modified M16 culture medium containing lactate and pyruvate but lacking glucose. The roles of lactate, pyruvate and glucose during preimplantation development of embryos from random-bred mice in vitro were therefore examined. When all three substrates were present continuously during culture, one-cell embryos arrested at the two- to four-cell stages. Improved development to the morula stage after 96 h in culture was obtained in media containing pyruvate alone, lactate and pyruvate, pyruvate and glucose, lactate pyruvate and glucose for the first 24 h, and medium containing lactate and pyruvate for the remaining 72 h. In a second experiment, embryos were cultured in medium containing pyruvate alone, lactate and pyruvate or pyruvate and glucose for the first 24 h, and lactate plus pyruvate medium for the second 24 h. Subsequent transfer to medium containing lactate, pyruvate and glucose supported the morula to blastocyst transition. These results show that developmental arrest in vitro can be overcome by changing the combination of energy substrates at different stages of preimplantation development.  相似文献   

7.
Various factors, such as quality of the oocyte, oxygen tension, embryo density, and kind of energy substrate during in vitro production of embryos may affect the rate of preimplantation embryo development. In the present study we used 12553 bovine oocytes aspirated from slaughterhouse ovaries to evaluate various culture conditions that would increase in vitro production of advanced stages of preimplantation embryos. The morphological quality of the oocyte based on the compactness and number of layers of cumulus cells had significant positive effects on the rates of in vitro maturation, fertilization and development to the morula and blastocyst stages. None of the corona-enclosed or nude oocytes progressed beyond the 8- to 16-cell stage. The level of oxygen (5 or 20%) did not affect the proportion of one-cell embryos undergoing cleavage or progressing to morula and blastocyst stages. The rate of development of one-cell embryos originating from inferior quality oocytes was significantly improved when cultured in groups of 40 instead of 20 embryos per 0.5 mL medium. In the presence of cumulus cells, glucose had beneficial effects on in vitro maturation and subsequent development of IVM-IVF zygotes. The presence of serum improved the rate of in vitro development of one-cell embryos. Minimum Essential Medium supplemented with energy substrates according to the findings of metabolic studies was less effective in supporting in vitro maturation and subsequent development than TCM-199. In conclusion, morphological grading of immature oocytes is an appropriate selection criterion for their developmental ability. Embryo yields from low quality oocytes can be increased by culturing them in large groups. Serum is not essential for in vitro generation of embryos but its addition improves rates of success.  相似文献   

8.
The development of one- and two-cell mouse embryos to morula-blastula stages was followed in vitro after treatment with low doses of U.V.-light, ionizing radiation or N-acetoxy-2-fluorenylacetamide. Exposure of one-cell embryos to either radiation source 18 and 24 hours after human chorionic gonadotropin injections prevented maturation, most embryos being arrested at the one-cell stage and a few at the two-cell stage. Two-cell embryos, however, were not sensitive to low doses of either U.V. or X-irradiation and developed normally. Treatment of early one-cell embryos with the carcinogen, N-acetoxy-2-fluorenyl-acetamide (0-7 muM), also arrested development, whereas exposure of late one-cell embryos did not completely prevent maturation to morula-blastula stages. Exposure of two-cell embryos to the same concentration of carcinogen had no effect on their development to blastulas. Results with all three agents showed that mouse embryos at the one-cell stage are more sensitive than those at the two-cell stage, as judged by their ability to develop in vitro.  相似文献   

9.
Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development.  相似文献   

10.
Xie Y  Sun T  Wang QT  Wang Y  Wang F  Puscheck E  Rappolee DA 《FEBS letters》2005,579(2):398-408
It is clear that G1-S phase control is exerted after the mouse embryo implants into the uterus 4.5 days after fertilization (E4.5); null mutants of genes that control cell cycle commitment such as max, rb (retinoblastoma), and dp1 are embryonic lethal after implantation with proliferation phenotypes. But, a number of studies of genes mediating proliferation control in the embryo after fertilization-implantation have yielded confusing results. In order to understand when embryos might first exert G1-S phase regulatory control, we assayed preimplantation mouse embryos for the acquisition of expression of mRNA, protein, and phospho-protein for max, Rb, and DP-1, and for the proliferation-promoting phospho-protein forms of mycC (thr58/ser62) and Rb (ser795). The key findings are that: (1) DP-1 protein was present in the nucleus as early as the four-cell stage onwards, (2) max protein was in the nucleus, suggesting function from the four-cell stage onwards, (3) both mycC and Rb all form protein was present at increasing quantities in the cytoplasm from the 2 cell and 4/8 cell stage, respectively, (4) the phosphorylated form of mycC phospho was present in the nucleus at high levels from the two-cell stage through blastocyst-stage, and (5) the phosphorylated form of Rb was detected at low levels in the two-cell stage embryo and was highly expressed at the 4/8-cell stage through the blastocyst stage. Taken together, these data suggest that activation of mycC phospho/max dimer pairs, (E2F)/DP-1 dimer pairs, and repression of Rb inhibition of cell cycle progression via phosphorylation at ser795 occurs at the earliest stages of embryonic development. In addition, the presence of max, mycC phospho, DP-1, and Rb phospho in the nuclei of embryonic and placental lineage cells in the blastocyst and in trophoblast stem cells suggests that a similar type of cell cycle regulation is present throughout preimplantation development and in both embryonic and extra-embryonic cell lineages.  相似文献   

11.
12.
13.
14.
15.
Preimplantation mouse embryos were individually analyzed for glycogen phosphorylase, P-glucomutase, UDPG, UTP, ATP, and the sum of other nucleotide triphosphates (i.e., GTP + CTP). UDPG changes during starvation and refeeding were also determined. Phosphorylase activity was exceedingly low at the two-cell stage and rose eightfold by the morula stage. P-glucomutase was 2000 times more active than phosphorylase in two-cell embryos and fell progressively to about half the initial level by the eight-cell stage. UDPG was highest in one-cell embryos, fell to less then 20% by the two-cell stage, then recovered to about a 35% level at later stages. The ATP to UTP ratio varied from about 5:1 at the earliest stages to about 3:1 in eight-cell and older embryos. GTP plus CTP was 50% higher than UTP at the one-cell stage but was equal to UTP or lower thereafter. The results combined with earlier data from several laboratories indicate that (1) up to the morula stage the embryo can make glycogen but has difficulty using it because of insufficient glycogen phosphorylase and (2) UDPG and glucose-6-P levels are poorly coordinated, probably due to difficulty (or control) at the UDPG pyrophosphorylase step.  相似文献   

16.
DNA damage associated with assisted reproductive technologies is an important factor affecting gamete fertility and embryo development. Activation of the TGR5 receptor by tauroursodeoxycholic acid (TUDCA) has been shown to reduce endoplasmic reticulum (ER) stress in embryos; however, its effect on genome damage responses (GDR) activation to facilitate DNA damage repair has not been examined. This study aimed to investigate the effect of TUDCA on DNA damage repair and embryo development. In a porcine model of ultraviolet light (UV)‐induced nuclear stress, TUDCA reduced DNA damage and ER stress in developing embryos, as measured by γH2AX and glucose‐regulated protein 78 immunofluorescence, respectively. TUDCA was equally able to rescue early embryo development. No difference in total cell number, DNA damage, or percentage of apoptotic cells, measured by cleaved caspase 3 immunofluorescence, was noted in embryos that reached the blastocyst stage. Interestingly, Dicer‐substrate short interfering RNA‐mediated disruption of TGR5 signaling abrogated the beneficial effects of TUDCA on UV‐treated embryos. Quantitative PCR analysis revealed activation of the GDR, through increased messenger RNA abundance of DNAPK, 53BP1, and DNA ligase IV, as well as the ER stress response, through increased spliced XBP1 and X‐linked inhibitor of apoptosis. Results from this study demonstrated that TUDCA activates TGR5‐mediated signaling to reduce DNA damage and improve embryo development after UV exposure.  相似文献   

17.
18.
19.
Present studies were performed to investigate what factors affect the morphogenesis of preimplantation mouse embryos, and to find the action mechanism of that factor by using cytoplasm removal and its reconstitution from a different developmental stage embryo. Half (HP group) or one-third of cytoplasm (TP group) was removed from 1-cell mouse embryos by micromanipulation, and their morphogenesis and genome expression were compared with sham-operated embryos (SP group). The compaction and blastocoel formation of embryos in both the HP and TP groups were accelerated in time and cell stage when compared with those of the SP group. However, the total activity and time of RNA synthesis, and gene expression of ZO-1alpha+ isoform were not different. To change the cytoplasm composition without altering the nucleus/cytoplasmic ratio, half a 1-cell embryo with both pronuclei was reconstituted with the half enucleated cytoplasm of 1-cell embryo (P + P group), 2-cell (P + 2 group) or 4-cell (P + 4 group) by electrofusion. Embryonic compaction, timing of RNA synthesis, and stage-specific gene expression of the ZO-1alpha(+) isoform in the P + 2 and P + 4 groups were accelerated in time and cell stage than that in the P + P group, but not different between the P + 2 and P + 4 groups. In addition, a blastomere of 2-cell embryo was reconstituted with the enucleated cytoplasm of 1-cell embryo (2 + P group) or 2-cell (2 + 2 group) in equal volume by electrofusion. Also, the karyoplast of 2-cell was fused with the enucleated 1-cell embryo (2 + PP group). Embryonic development, total activity of RNA synthesis, and gene expression of the ZO-1alpha(+) isoform of embryos in the 2 + P and 2 + PP groups were delayed when compared with those of the 2 + 2 group. Also, the phenomena of compaction and blastocoel formation were delayed in the development time and cell stage. From these results, the nucleus/cytoplasm ratio was found to have no direct effect on the regulation of embryonic morphogenesis, although it accelerated compaction and blastocoel formation. However, cytoplasmic factors that altered between 1- and 2-cell stages regulate embryonic morphogenesis, especially compaction, of preimplantation mouse embryos in concentration-dependent manner.  相似文献   

20.
The stage and cell-specific accumulation of mammalian isoforms of transforming growth factor-beta (TGF-beta 1, TGF-beta 2, and TGF-beta 3) and TGF-beta binding were examined in the preimplantation embryo and in progesterone (P4)-treated delayed or P4 plus estradiol-17 beta (E2)-treated activated blastocysts in the mouse. Immunocytochemical studies revealed that while all three immunoreactive TGF-beta isoforms were present in one-cell embryos, very little or no immunostaining was observed in two-cell embryos. However, distinct immunostaining of these isoforms was again observed in four-cell embryos and persisted through the blastocyst stage. Among the isoforms studied, TGF-beta 2 immunostaining showed a unique pattern in late morulae. In many of these morulae, the staining was primarily observed in outside cells. However, in blastocysts, immunostaining for all three isoforms was present both in the inner cell mass (ICM) and trophectoderm (Tr). Immunostaining in sectioned blastocysts and immunosurgically isolated ICMs confirmed immunostaining in Tr and ICM cells. To ascertain whether preimplantation embryos can produce TGF-beta isoforms, immunostaining was performed in embryos grown in vitro from two-cell stage in simple balanced salt solution. Immunoreactive TGF-beta s 1-3 were present in embryos at all stages of development examined (four-cell embryos through blastocysts). The virtual absence of immunoactive TGF-beta s in two-cell embryos but their accumulation in embryos at later stages of development in vitro provides evidence that these growth factors were produced by embryos. In order to assess at what stages of development preimplantation embryos could be responsive to TGF-beta s, specific binding of [125I]TGF-beta 1 and [125I]TGF-beta 2 was performed in embryos and examined by autoradiography. Low levels of binding were first detected in eight-cell embryos. The binding increased in morulae followed by a further increase in blastocysts. Analysis of binding of [125I]TGF-beta 2 in immunosurgically isolated ICMs indicated that binding was primarily evident in Tr cells. Affinity labeling of TGF-beta 1 or TGF-beta 2 in Day 4 blastocysts revealed three classes of binding proteins with approximate molecular sizes of 65 kDa (type I), 90 kDa (type II), and greater than 250 kDa (type III), in addition to a doublet of 130 and 140 kDa proteins. This observation is similar to those reported for other cell types. The data suggest that embryos are likely to be responsive to TGF-beta s after the third cleavage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号