首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

There is increasing recognition that pulmonary artery stiffness is an important determinant of right ventricular (RV) afterload in pulmonary arterial hypertension (PAH). We used intravascular ultrasound (IVUS) to evaluate the mechanical properties of the elastic pulmonary arteries (PA) in subjects with PAH, and assessed the effects of PAH-specific therapy on indices of arterial stiffness.

Method

Using IVUS and simultaneous right heart catheterisation, 20 pulmonary segments in 8 PAH subjects and 12 pulmonary segments in 8 controls were studied to determine their compliance, distensibility, elastic modulus and stiffness index β. PAH subjects underwent repeat IVUS examinations after 6-months of bosentan therapy.

Results

At baseline, PAH subjects demonstrated greater stiffness in all measured indices compared to controls: compliance (1.50±0.11×10–2 mm2/mmHg vs 4.49±0.43×10–2 mm2/mmHg, p<0.0001), distensibility (0.32±0.03%/mmHg vs 1.18±0.13%/mmHg, p<0.0001), elastic modulus (720±64 mmHg vs 198±19 mmHg, p<0.0001), and stiffness index β (15.0±1.4 vs 11.0±0.7, p = 0.046). Strong inverse exponential associations existed between mean pulmonary artery pressure and compliance (r2 = 0.82, p<0.0001), and also between mean PAP and distensibility (r2 = 0.79, p = 0.002). Bosentan therapy, for 6-months, was not associated with any significant changes in all indices of PA stiffness.

Conclusion

Increased stiffness occurs in the proximal elastic PA in patients with PAH and contributes to the pathogenesis RV failure. Bosentan therapy may not be effective at improving PA stiffness.  相似文献   

2.

Background

The nitric oxide (NO)–soluble guanylate cyclase (sGC)–cyclic guanosine monophosphate (cGMP) signal-transduction pathway is impaired in many cardiovascular diseases, including pulmonary arterial hypertension (PAH). Riociguat (BAY 63–2521) is a stimulator of sGC that works both in synergy with and independently of NO to increase levels of cGMP. The aims of this study were to investigate the role of NO–sGC–cGMP signaling in a model of severe PAH and to evaluate the effects of sGC stimulation by riociguat and PDE5 inhibition by sildenafil on pulmonary hemodynamics and vascular remodeling in severe experimental PAH.

Methods and Results

Severe angioproliferative PAH was induced in rats by combined exposure to the vascular endothelial growth factor receptor antagonist SU5416 and hypoxia (SUHx). Twenty-one days thereafter rats were randomized to receive either riociguat (10 mg/kg/day), sildenafil (50 mg/kg/day) or vehicle by oral gavage, for 14 days until the day of the terminal hemodynamic measurements. Administration of riociguat or sildenafil significantly decreased right ventricular systolic pressure (RVSP). Riociguat significantly decreased RV hypertrophy (RVH) (0.55±0.02, p<0.05), increased cardiac output (60.8±.8 mL/minute, p<0.05) and decreased total pulmonary resistance (4.03±0.3 mmHg min−1 ml−1 100 g BW, p<0.05), compared with sildenafil and vehicle. Both compounds significantly decreased the RV collagen content and improved RV function, but the effects of riociguat on tricuspid annular plane systolic excursion and RV myocardial performance were significantly better than those of sildenafil (p<0.05). The proportion of occluded arteries was significantly lower in animals receiving riociguat than in those receiving vehicle (p<0.05); furthermore, the neointima/media ratio was significantly lower in those receiving riociguat than in those receiving sildenafil or vehicle (p<0.05).

Conclusion

Riociguat and sildenafil significantly reduced RVSP and RVH, and improved RV function compared with vehicle. Riociguat had a greater effect on hemodynamics and RVH than sildenafil.  相似文献   

3.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotalinetreated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dosedependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

4.
XR Zuo  Q Wang  Q Cao  YZ Yu  H Wang  LQ Bi  WP Xie  H Wang 《PloS one》2012,7(9):e44485

Background

Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear.

Methodology/Principal Findings

RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats.

Conclusions/Significance

Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH.  相似文献   

5.

Background

The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH.

Methods

PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine.

Results

MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV.

Conclusions

Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.  相似文献   

6.
The study aim was to assess three-dimensional electrocardiogram (ECG) changes during development of pulmonary arterial hypertension (PAH). PAH was induced in male Wistar rats (n = 23) using monocrotaline (MCT; 40 mg/kg sc). Untreated healthy rats served as controls (n = 5). ECGs were recorded with an orthogonal three-lead system on days 0, 14, and 25 and analyzed with dedicated computer software. In addition, left ventricular (LV)-to-right ventricular (RV) fractional shortening ratio was determined using echocardiography. Invasively measured RV systolic pressure was 49 (SD 10) mmHg on day 14 and 64 (SD 10) mmHg on day 25 vs. 25 (SD 2) mmHg in controls (both P < 0.001). Baseline ECGs of controls and MCT rats were similar, and ECGs of controls did not change over time. In MCT rats, ECG changes were already present on day 14 but more explicit on day 25: increased RV electromotive forces decreased mean QRS-vector magnitude and changed QRS-axis orientation. Important changes in action potential duration distribution and repolarization sequence were reflected by a decreased spatial ventricular gradient magnitude and increased QRS-T spatial angle. On day 25, LV-to-RV fractional shortening ratio was increased, and RV hypertrophy was found, but not on day 14. In conclusion, developing PAH is characterized by early ECG changes preceding RV hypertrophy, whereas severe PAH is marked by profound ECG changes associated with anatomical and functional changes in the RV. Three-dimensional ECG analysis appears to be very sensitive to early changes in RV afterload.  相似文献   

7.
Lung injury induced in rats by the pyrrolizidine alkaloid monocrotaline is a well-documented model of pulmonary hypertension. To our knowledge, however, monocrotaline-induced cardiopulmonary injury has rarely been described and has never been quantitated in mice. In the present study, adult male mice received 2.4, 4.8, or 24.0 mg monocrotaline/kg body weight/day in the drinking water continuously for 6 weeks. These doses represent 1, 2, and 10 times the severely pneumotoxic regimen in rats. Pulmonary endothelial function was monitored by right lung angiotensin converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. Light and electron microscopy were performed on the left lungs. Cardiac right ventricular hypertrophy was evaluated by the right ventricle to left ventricle plus septum weight ratio (RV/LV + S). Monocrotaline-treated mice exhibited a dose-dependent decrease in lung ACE and PLA activities and an increase in PGI2 and TXA2 production, indicative of endothelial dysfunction. However, these responses were significant only after the highest monocrotaline dose. Light and electron microscopy revealed dose-dependent pulmonary inflammatory and exudative reactions. Unlike previous studies in rats, however, monocrotaline-treated mice developed relatively little lung fibrosis, cardiomegaly, or right ventricular hypertrophy, and no occlusive medial thickening of the pulmonary arteries, even at the highest dose level. These and previous data indicate that there are quantitative biochemical and qualitative morphological differences between mice and rats with respect to monocrotaline pneumotoxicity. Furthermore, in monocrotaline-treated mice (but not in rats) there appears to be a dissociation between lung endothelial dysfunction and inflammation on the one hand, and pulmonary hypertension and fibrosis on the other.  相似文献   

8.

Background

This study investigated whether the hepatocyte growth factor (HGF) genetically modified marrow-mesenchymal stem cells (MSCs) transplantation could offer a therapeutic benefit for pulmonary arterial hypertension (PAH).

Methodology

Three weeks after monocrotaline administration, Sprague-Dawley rats were randomly divided into the following groups: PAH (n=10), MSCs (5×106 MSCs injected into the jugular veins, n=10), HGF (5×106 MSCs transfected with Ad-HGF into the jugular veins, n=10). Another three weeks later, hemodynamic changes and histomorphology were observed. Electron microscopy and immunofluorescence were also used to observe changes in the gap junctions of the heart.

Results

Compared with the PAH and MSC groups, hemodynamic parameters improved significantly in the MSC-HGF group. Right ventricular hypertrophy was improved as measured by the RV/LV weight and thickness ratios. Histologically, cardiac myocytes and cell nuclei recovered and interstitial fibrosis decreased in the MSC and MSC-HGF groups. Under electron microscopy, the gap junctions exhibited a disorganised morphology in the PAH group and the number of gap junctions was lower in this group than in the other groups. The distribution of connexins 43 and 40 were improved in the MSC-HGF group.

Conclusions

MCT-induced PAH can be treated and improved by HGF genetically modified MSCs, which may occur via connexin remodeling.  相似文献   

9.
We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague–Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68+ Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression.  相似文献   

10.

Background

Myostatin is a negative regulator of skeletal muscle mass whose activity is upregulated in adult heart failure (HF); however, its role in congenital heart disease (CHD) is unknown.

Methods

We studied myostatin and IGF-1 expression via Western blot in cardiac tissue at varying degrees of myocardial dysfunction and after biventricular support in CHD by collecting myocardial biopsies from four patient cohorts: A) adult subjects with no known cardiopulmonary disease (left ventricle, LV), (Adult Normal), (n = 5); B) pediatric subjects undergoing congenital cardiac surgery with normal RV size and function (right ventricular outflow tract, RVOT), (n = 3); C) pediatric subjects with worsening but hemodynamically stable LV failure [LV and right ventricle (LV, RV,)] with biopsy collected at the time of orthotopic heart transplant (OHT), (n = 7); and D) pediatric subjects with decompensated bi-ventricular failure on BiVAD support with biopsy collected at OHT (LV, RV, BiVAD), (n = 3).

Results

The duration of HF was longest in OHT patients compared to BIVAD. The duration of BiVAD support was 4.3±1.9 days. Myostatin expression was significantly increased in LV-OHT compared to RV-OHT and RVOT, and was increased more than double in decompensated biventricular HF (BiVAD) compared to both OHT and RVOT. An increased myostatin/IGF-1 ratio was associated with ventricular dysfunction.

Conclusions

Myostatin expression in increased in CHD, and the myostatin/IGF-1 ratio increases as ventricular function deteriorates. Future investigation is necessary to determine if restoration of the physiologic myostatin/IGF-1 ratio has therapeutic potential in HF.  相似文献   

11.

Background

Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure.

Methods

MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10).

Results

Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05).

Conclusions

Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.  相似文献   

12.

Purpose

Serotonin and the serotonin transporter have been implicated in the development of pulmonary hypertension (PH). Selective serotonin reuptake inhibitors (SSRIs) may have a role in PH treatment, but the effects of SSRI use on right ventricular (RV) structure and function are unknown. We hypothesized that SSRI use would be associated with RV morphology in a large cohort without cardiovascular disease (N = 4114).

Methods

SSRI use was determined by medication inventory during the Multi-Ethnic Study of Atherosclerosis baseline examination. RV measures were assessed via cardiac magnetic resonance imaging. The cross-sectional relationship between SSRI use and each RV measure was assessed using multivariable linear regression; analyses for RV mass and end-diastolic volume (RVEDV) were stratified by sex.

Results

After adjustment for multiple covariates including depression and left ventricular measures, SSRI use was associated with larger RV stroke volume (RVSV) (2.75 mL, 95% confidence interval [CI] 0.48–5.02 mL, p = 0.02). Among men only, SSRI use was associated with greater RV mass (1.08 g, 95% CI 0.19–1.97 g, p = 0.02) and larger RVEDV (7.71 mL, 95% 3.02–12.40 mL, p = 0.001). SSRI use may have been associated with larger RVEDV among women and larger RV end-systolic volume in both sexes.

Conclusions

SSRI use was associated with higher RVSV in cardiovascular disease-free individuals and, among men, greater RV mass and larger RVEDV. The effects of SSRI use in patients with (or at risk for) RV dysfunction and the role of sex in modifying this relationship warrant further study.  相似文献   

13.
The detection of multiple sex-specific blood pressure (BP) quantitative trait loci (QTLs) in independent total genome analyses of F2 (Dahl S x R)-intercross male and female rat cohorts confirms clinical observations of sex-specific disease cause and response to treatment among hypertensive patients, and mandate the identification of sex-specific hypertension genes/mechanisms. We developed and studied two congenic strains, S.R5A and S.R5B introgressing Dahl R-chromosome 5 segments into Dahl S chromosome 5 region spanning putative BP-f1 and BP-f2 QTLs. Radiotelemetric non-stressed 24-hour BP analysis at four weeks post-high salt diet (8% NaCl) challenge, identified only S.R5B congenic rats with lower SBP (−26.5 mmHg, P = 0.002), DBP (−23.7 mmHg, P = 0.004) and MAP (−25.1 mmHg, P = 0.002) compared with Dahl S female controls at four months of age confirming BP-f1 but not BP-f2 QTL on rat chromosome 5. The S.R5B congenic segment did not affect pulse pressure and relative heart weight indicating that the gene underlying BP-f1 does not influence arterial stiffness and cardiac hypertrophy. The results of our congenic analysis narrowed BP-f1 to chromosome 5 coordinates 134.9–141.5 Mbp setting up the basis for further fine mapping of BP-f1 and eventual identification of the specific gene variant accounting for BP-f1 effect on blood pressure.  相似文献   

14.
Yu H  Gao Z  Feng Z  Shu Y  Xiang N  Zhou L  Huai Y  Feng L  Peng Z  Li Z  Xu C  Li J  Hu C  Li Q  Xu X  Liu X  Liu Z  Xu L  Chen Y  Luo H  Wei L  Zhang X  Xin J  Guo J  Wang Q  Yuan Z  Zhou L  Zhang K  Zhang W  Yang J  Zhong X  Xia S  Li L  Cheng J  Ma E  He P  Lee SS  Wang Y  Uyeki TM  Yang W 《PloS one》2008,3(8):e2985

Background

While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008.

Methodology/Principal Findings

Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6–62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5×109 cells/L vs 93.0×109 cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003).

Conclusions/Significance

The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases.  相似文献   

15.

Background

This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.

Methodology/Principal Findings

One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65±.13) as compared to the fifth day during treatment (1.26±.19, p<0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89±.13, 1.00±.21, 1.13±.23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32±2.34 branches/mm3, p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29±3.51 branches/mm3). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45±1.36 µm2) as compared to saline treated tumor regions (30.83±4.31 µm2, p<0.001) and non-tumor regions (22.80±1.11 µm2, p<0.01).

Conclusions/Significance

Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment.  相似文献   

16.
Sahara M  Sata M  Morita T  Hirata Y  Nagai R 《PloS one》2012,7(3):e33367

Background

An antianginal KATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH) have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT)-induced PAH in rats.

Materials and Methods

Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg−1·day−1) alone; or nicorandil as well as either a KATP channel blocker glibenclamide or a nitric oxide synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME), from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP) was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs).

Results

Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg), whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01). Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS) expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) pathways in HUVECs, accompanied with the upregulation of both eNOS and Bcl-2 expression.

Conclusions

Nicorandil attenuated MCT-induced vascular endothelial damage and PAH through production of eNOS and anti-apoptotic factors, suggesting that nicorandil might have a promising therapeutic potential for PAH.  相似文献   

17.
TRAIL/TRAIL receptor system and susceptibility to multiple sclerosis   总被引:1,自引:0,他引:1  
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.  相似文献   

18.

Background

Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4).

Methodology/Principal Findings

In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin.

Conclusions/Significance

DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.  相似文献   

19.
There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68+ immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.  相似文献   

20.

Background

Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006) J Pharmacol Exp Ther 318:238–245). The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol.

Methods and Findings

Using human skin tissue, we report here the presence of specific [3H]-resveratrol binding sites (KD  = 180 nM) that are mainly located in the epidermis. Exposure of HaCaT cells to the nitric oxide free radical donor sodium nitroprusside (SNP; 0.3–3 mM) resulted in cell death which was reduced by resveratrol (EC50  = 14.7 µM), and to a much lesser extent by the resveratrol analogue piceatannol (EC50  = 95 µM) and epigallocatechin gallate (EC50  = 200 µM), a green-tea derived polyphenol. The protective action of resveratrol likely relates to its anti-apoptotic effect since at the same range of concentration it was able to reduce both the number of apoptotic cells as well as mitochondrial apoptotic events triggered by SNP.

Conclusion

Taken together, these findings suggest that resveratrol, by acting on specific polyphenol binding sites in epidermis, may be useful to prevent skin disorders associated with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号