首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The olive fly, Bactrocera oleae, is the most important pest affecting the olive industry, to which it is estimated to cause average annual losses in excess of one billion dollars. As with other insects with a wide distribution, it is generally accepted that the understanding of B. oleae population structure and dynamics is fundamental for the design and implementation of effective monitoring and control strategies. However, and despite important advances in the past decade, a clear picture of B. oleae''s population structure is still lacking. In the Mediterranean basin, where more than 95% of olive production is concentrated, evidence from several studies suggests the existence of three distinct sub-populations, but the geographical limits of their distributions, and the level of interpenetration and gene flow among them remain ill-characterized. Here we use mitochondrial haplotype analysis to show that one of the Mediterranean mitochondrial lineages displays geographically correlated substructure and demonstrate that Italic populations, though markedly distinct from their Iberian and Levantine counterparts are more diverse than previously described. Finally, we show that this distinction does not result from extant hypothetical geographic limits imposed by the Alps or the Pyrenees nor, more generally, does it result from any sharp boundary, as intermixing is observed in a broad area, albeit at variable levels. Instead, Bayesian phylogeographic analysis suggests the interplay between isolation-mediated differentiation during glacial periods and bi-directional dispersal and population intermixing in the interglacials has played a major role in shaping current olive fly population structure.  相似文献   

2.
The olive fly, Bactrocera oleae, is the major pest of olives in most commercial olive-growing regions worldwide. The species is abundant in the Mediterranean basin and has been introduced recently into California and Mexico, creating problems for quarantine protection and international trade. Here, we use nuclear microsatellite markers and mitochondrial sequences to examine the history of olive fly range expansion and colonization. Sampled populations span the current distribution of the olive fly worldwide, including South and Central Africa, Pakistan, Mediterranean Europe and Middle East, California, and Mexico. The Pakistani populations appear to be genetically well differentiated from the remaining populations, though rooting the origins of the species is problematic. Genetic similarity and assignment tests cluster the remaining populations into two genetic groups--Africa and a group including the Mediterranean basin and the American region. That Africa, and not the Mediterranean, is the origin of flies infesting cultivated olive is supported by the significantly greater genetic diversity at microsatellite loci in Africa relative to the Mediterranean area. The results also indicate that the recent invasion of olive flies in the American region most likely originated from the Mediterranean area.  相似文献   

3.
Global warming will affect all species but in largely unknown ways, with certain regions such as the Mediterranean Basin and its major islands including Sardinia being particularly vulnerable to desertification. Olive ( Olea europaea ) is of eco-social importance in the Mediterranean where it was domesticated. This drought-resistant crop and its major pest, the olive fly ( Bactrocera oleae ), have tight biological links that make them a suitable model system for climate change studies in the Mediterranean. Here a physiologically based weather-driven demographic model of olive and olive fly is used to analyze in detail this plant–pest system in Sardinia under observed weather (10 years of daily data from 48 locations), three climate warming scenarios (increases of 1, 2 and 3 °C in average daily temperature), and a 105-year climate model scenario for the Alghero location (e.g. 1951–2055). grass gis is used to map model predictions of olive bloom dates and yield, total season-long olive fly pupae, and percent fruit attacked by the fly. Island wide simulation data are summarized using multivariate regression. Model calibration with field bloom date data were performed to increase simulation accuracy of olive flowering predictions under climate change. As climate warms, the range of olive is predicted to expand to higher altitudes and consolidate elsewhere, especially in coastal areas. The range of olive fly will extend into previously unfavorable cold areas, but will contract in warm inland lowlands where temperatures approach its upper thermal limits. Consequently, many areas of current high risk are predicted to have decreased risk of fly damage with climate warming. Simulation using a 105-year climate model scenario for Alghero, Sardinia predicts changes in the olive–olive fly system expected to occur if climate continued to warm at the low rate observed during in the past half century.  相似文献   

4.
Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics.  相似文献   

5.
The Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae) is known to be one of the most destructive and economically important agricultural pests worldwide. Several previous research projects have investigated the genetic makeup of regional populations of this pest and the relationships of populations from different areas of the world, including countries from the Mediterranean region. However, previously, little information has been reported on populations from Tunisia, despite the fact that this pest occurs in several agriculturally sensitive areas of this country. In order to study the genetic diversity of medfly populations within Tunisia, specimens were collected from the Coastal, Northern, Central and Southern regions of the country. Results using mitochondrial ND5 sequences show the presence of distinct haplotypes. This data used to analyze the levels of genetic variability within and between populations from Tunisia as well as from other countries in the Mediterranean region (Morocco and Israel) and in the world (Seychelles and Hawaii). This study also leads to a better understanding of the origin of new infestations and the colonization processes involving this pest.  相似文献   

6.
The olive fruit fly (Bactrocera oleae Gmelin) is the most important olive pest in the north‐eastern Adriatic coast region. Despite the importance of olive production in the region, and the significance of the olive fruit fly, no information with respect to genetic diversity, population structure or dispersion patterns of this pest is available. The aims of this study were to investigate the genetic structure of the olive fly population in the Slovenian Istria region using microsatellite markers to determine olive fruit fly migration between locations and to establish an appropriate and effective strategy for controlling the pest population. Analysis was performed on a sample of 117 flies, collected from attacked olive fruits at three different locations. Olive fruit flies were genotyped using eight microsatellite loci. Sixty‐six alleles were identified over all microsatellite loci with an average of 8.25 alleles per locus. The population structure was determined with methods based on Bayesian principles using the BAPS 6.0 and STRUCTURE 2.3 programs. Genetic analysis confirmed unlimited migration and random mating between individuals of different microlocations, which suggests time‐coordinated first treatment in the region would be the best solution.  相似文献   

7.
Olive fruit fly is a key pest of olive and consequently a serious threat to olive fruit and oil production throughout the Mediterranean region. With the establishment of Bactrocera oleae in California a decade ago, interest was renewed in classical (introduction) biological control of the pest. Here we discuss the prospects of identifying natural enemies of B. oleae in Africa and Asia that may help reduce B. oleae populations in California and elsewhere. Based on the current understanding of Bactrocera phylogenetics, early opinions that B. oleae originated in Africa or western Asia rather than the Mediterranean region or the Near East are taxonomically and ecologically supportable. Closely related to cultivated olive, the wild olive Olea europaea cuspidata is widely distributed in southern and eastern Africa, the Arabian Peninsula, and eastwards into Asia as far as southwestern China. Little is known regarding the biology and ecology of B. oleae in Africa and eastern Asia, especially in wild olives. While the diversity of parasitoids of B. oleae in the Mediterranean region is low and unspecialized, a diverse assemblage of parasitoids is known from B. oleae in Africa. Conversely, regions in Asia have remained largely unexplored for B. oleae and its natural enemies.  相似文献   

8.
The olive fly, Bactrocera oleae, is the key pest on olives in the Mediterranean area. The pest can destroy, in some cases, up to 70% of the olive production. Its control relies mainly on chemical treatments, sometimes applied by aircraft over vast areas, with their subsequent ecological and toxicological side effects. Bacillus thuringiensis is a spore-forming soil bacterium which produces a protein crystal toxic to some insects, including the orders of Lepidoptera, Diptera, and Coleoptera and other invertebrates. The aim of this study was to search for isolates toxic to B. oleae. Several hundred B. thuringiensis isolates were obtained from olive groves and olive presses in different areas of Greece, Sardinia (Italy), and Spain and from cooperating scientists throughout the world. Some isolates were found toxic only to adults or larvae and some to both stages of the olive fly. In addition, the most toxic isolates were assayed on Opius concolor Szepl. (Hym. Braconidae), the most important parasitoid of the olive fruit fly. Only 3 isolates out of 14 gave significant mortality against this parasitoid. Several of the most toxic crystalliferous isolates may contain novel toxins since they gave no PCR products when probed with primers specified for 39 known toxin genes.  相似文献   

9.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

10.
11.
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a major pest, infesting hundreds of crop types. Since current field monitoring is mostly manual, understanding the spatiotemporal patterns of pest emergence at the fine scale can optimize precise trap placement and site‐specific treatment activities, also within area wide integrated pest management projects. We carried out a three‐year study in deciduous orchards in Israel, testing for the existence of subplot hot spots in which medfly populations display small‐scale aggregations over consecutive seasons, beyond the expected spatial variability resulting from host type and ripening sequence. medfly population increase in these locations often preceded or was parallel to infestations in surrounding orchards, suggesting that hot spots can provide an important tool for effective prediction and control of pest emergence. We also examined the use of expert knowledge to predict hot spot locations and suggest a methodology for verifying them.  相似文献   

12.
13.
Bactrocera oleae is the major insect pest of the olive fruit. Twelve microsatellite loci isolated from the genome of this insect were used in a Mediterranean-wide population analysis. These loci were highly polymorphic with a mean number of alleles per locus of 10.42 and a mean effective number of alleles of 2.76. The analysis was performed on a sample of 671 flies collected from nineteen locations around the European part of the Mediterranean basin. Despite the high level of gene flow across the Mediterranean, results support the notion of a differentiation of three subpopulations: one of the Iberian Peninsula, one of Greece and Italy and one of Cyprus. In addition, the gradual decrease of heterozygosity from the Eastern to the Western part of the Mediterranean indicates a westward expansion of the species.  相似文献   

14.
We introduce a Bayesian method for estimating hidden population substructure using multilocus molecular markers and geographical information provided by the sampling design. The joint posterior distribution of the substructure and allele frequencies of the respective populations is available in an analytical form when the number of populations is small, whereas an approximation based on a Markov chain Monte Carlo simulation approach can be obtained for a moderate or large number of populations. Using the joint posterior distribution, posteriors can also be derived for any evolutionary population parameters, such as the traditional fixation indices. A major advantage compared to most earlier methods is that the number of populations is treated here as an unknown parameter. What is traditionally considered as two genetically distinct populations, either recently founded or connected by considerable gene flow, is here considered as one panmictic population with a certain probability based on marker data and prior information. Analyses of previously published data on the Moroccan argan tree (Argania spinosa) and of simulated data sets suggest that our method is capable of estimating a population substructure, while not artificially enforcing a substructure when it does not exist. The software (BAPS) used for the computations is freely available from http://www.rni.helsinki.fi/~mjs.  相似文献   

15.
Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long‐term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.  相似文献   

16.
The tephritid Bactrocera oleae (Gmelin) is a harmful pest of olive crops that cause important agricultural and economic losses in the Mediterranean area where 90% of the world olive trees are cultivated. The knowledge of the genetic diversity in insect pest species populations is critical for decisions concerning appropriate control management strategies. In the present work, the genetic variability within and among 7 populations ‐five from Spain, one from Italy and one from Tunisia‐, was assessed by sequencing 1151 bp of the COI gene. A total of 21 haplotypes were observed. The intraspecific diversity was high, particularly in the Spanish populations (haplotype and nucleotide diversity 0.84 and 0.00137, respectively). However, the genetic differentiation among the populations was low in the case of Spanish ones (Fst between 0 and 0.041), and higher –and statistically significant– when comparing with the Italian and Tunisian samples. The haplotypes distribution and the PCoA analysis show three clear groups of populations: Spanish, Italian and Tunisian. The results might indicate the length of time elapsed since B. oleae became established in the Mediterranean region, the large effective sizes expected of its populations and the high gene flow among Iberian populations. The information could be relevant for integrated control programmes coordination.  相似文献   

17.
Accurate estimates of remating in wild female insects are required for an understanding of the causes of variation in remating between individuals, populations and species. Such estimates are also of profound importance for major economic fruit pests such as the Mediterranean fruit fly (Ceratitis capitata). A major method for the suppression of this pest is the sterile insect technique (SIT), which relies on matings between mass-reared, sterilized males and wild females. Remating by wild females will thus impact negatively on the success of SIT. We used microsatellite markers to determine the level of remating in wild (field-collected) Mediterranean fruit fly females from the Greek Island of Chios. We compared the four locus microsatellite genotypes of these females and their offspring. Our data showed 7.1% of wild females remated. Skewed paternity among progeny arrays provided further evidence for double matings. Our lowest estimate of remating was 3.8% and the highest was 21%.  相似文献   

18.
The invasive Mediterranean fruit fly (medfly), Ceratitis capitata, is one of the major agricultural and economical pests globally. Understanding invasion risk and mitigation of medfly in agricultural landscapes requires knowledge of its population structure and dispersal patterns. Here, estimates of dispersal ability are provided in medfly from South Africa at three spatial scales using molecular approaches. Individuals were genotyped at 11 polymorphic microsatellite loci and a subset of individuals were also sequenced for the mitochondrial cytochrome oxidase subunit I gene. Our results show that South African medfly populations are generally characterized by high levels of genetic diversity and limited population differentiation at all spatial scales. This suggests high levels of gene flow among sampling locations. However, natural dispersal in C. capitata has been shown to rarely exceed 10 km. Therefore, documented levels of high gene flow in the present study, even between distant populations (>1600 km), are likely the result of human-mediated dispersal or at least some form of long-distance jump dispersal. These findings may have broad applicability to other global fruit production areas and have significant implications for ongoing pest management practices, such as the sterile insect technique.  相似文献   

19.
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the major insect pest of olive orchards (Olea europaea L.), causing extensive damages on cultivated olive crops worldwide. Due to its economic importance, it has been the target species for a variety of population control approaches including the sterile insect technique (SIT). However, the inefficiency of the current mass‐rearing techniques impedes the successful application of area‐wide integrated pest management programs with an SIT component. It has been shown that insect mass rearing and quality of sterile insects can be improved by the manipulation of the insect gut microbiota and probiotic applications. In order to exploit the gut bacteria, it is important to investigate the structure of the gut microbial community. In the current study, we characterized the gut bacterial profile of two wild olive fruit fly populations introduced in laboratory conditions using next generation sequencing of two regions of the 16S rRNA gene. We compared the microbiota profiles regarding the geographic origin of the samples. Additionally, we investigated potential changes in the gut bacteria community before and after the first exposure of the wild adult flies to artificial adult diet with and without antibiotics. Various genera – such as Erwinia, Providencia, Enterobacter, and Klebsiella – were detected for the first time in B. oleae. The most dominant species was Candidatus Erwinia dacicola Capuzzo et al. and it was not affected by the antibiotics in the artificial adult diet used in the first generation of laboratory rearing. Geographic origin affected the overall structure of the gut community of the olive fruit fly, but antibiotic treatment in the first generation did not significantly alter the gut microbiota community.  相似文献   

20.
Molecular genetic research on the Mediterranean fruit fly,Ceratitis capitata, will provide tools to permit determination of source populations for new pest infestations. Restriction fragment length polymorphism (RFLP) of mitochondrial DNA provides some interpopulation discrimination. A restriction map, including the informative variableEcoRV andXbaI restriction sites, is constructed for the Mediterranean fruit fly, and several restriction sites are associated with specific gene regions based on polymerase chain reaction-RFLP and sequence analyses. A partial sequence of the mitochondrial 16S ribosomal RNA gene is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号