首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).  相似文献   

2.
In a recent study, SM1-transgenic Anopheles stephensi, which are resistant partially to Plasmodium berghei, had higher fitness than non-transgenic mosquitoes when they were maintained on Plasmodium-infected blood. This result should be interpreted cautiously with respect to malaria control using transgenic mosquitoes because, despite the evolutionary advantage conferred by the transgene, a concomitant cost prevents it from invading the entire population. Indeed, for the spread of a resistance transgene in a natural situation, the transgene's fitness cost and the efficacy of the gene drive will be more crucial than any evolutionary advantage.  相似文献   

3.
4.
Anautogenous mosquitoes require blood meals to promote egg development. If adequate nutrients are not obtained during larval development, the resulting "small" sized adult mosquitoes require multiple blood meals for egg development; markedly increasing host-vector contacts and the likelihood of disease transmission. Nutrient-sensitive target of rapamycin (TOR) signaling is a key signaling pathway that links elevated hemolymph amino acid levels derived from the blood meal to the expression of yolk protein precursors in the fat body. Here we report that the blood-meal-induced activation of the TOR-signaling pathway and subsequent egg maturation depends on the accumulation of adequate nutritional reserves during larval development. We have established well-nourished, "standard" mosquitoes and malnourished, "small" mosquitoes as models to address this nutrient sensitive pathway. This regulatory mechanism involves juvenile hormone (JH), which acts as a mediator of fat body competence, permitting the response to amino acids derived from the blood meal. We demonstrate that treatment with JH results in recovery of the TOR molecular machinery, Aedes aegypti cationic amino acid transporter 2 (AaiCAT2), TOR, and S6 kinase (S6K), in fat bodies of small mosquitoes, enabling them to complete their first gonotrophic cycle after a single blood meal. These findings establish a direct link between nutrient reserves and the establishment of TOR signaling in mosquitoes.  相似文献   

5.
In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission.  相似文献   

6.
Malaria transmission relies on the sporogonic development of Plasmodium parasites within insect vectors. Sporogony is a complex process that involves several morphologically distinct life-stages and can be described in terms of population dynamics: changes in the abundance and distribution of successive life-stages throughout development. Recent publications on the population dynamics of sporogony are reviewed, with special attention to the differences and similarities among the parasite-vector systems examined thus far. Understanding the population dynamics of malaria parasites within their natural vectors will lead to a better understanding of how malaria parasites survive and are maintained within mosquitoes.  相似文献   

7.
Evidence continues to accumulate showing that the malaria parasites (Plasmodium spp.) reduce the survival and fecundity of their mosquito vectors (Anopheles spp.). Our ability to identify the possible epidemiological and evolutionary consequences of these parasite-induced fitness reductions has been hampered by a poor understanding of the physiological basis of these shifts. Here, we explore whether the reductions in fecundity and longevity are the result of a parasite-mediated depletion or reallocation of the energetic resources of the mosquito. Mosquitoes infected with Plasmodium chabaudi were expected to have less energetic resources than uninfected mosquitoes, and energy levels were predicted to be lowest in mosquitoes infected with the most virulent parasite genotypes. Not only was there no evidence of a parasite-mediated reduction in the overall energetic budget of mosquitoes, but Plasmodium was actually associated with increased levels of glucose, a key insect nutritional and energetic resource. The data strongly suggest the existence of an increase in sugar feeding in mosquitoes infected with Plasmodium. We suggest different adaptive explanations for an enhanced sugar uptake in infected mosquitoes and call for more studies to investigate the physiological role of glucose in the Plasmodium-mosquito interaction.  相似文献   

8.
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.  相似文献   

9.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

10.
Kang C  Avery L 《Autophagy》2008,4(1):82-84
Autophagy is an evolutionally conserved lysosomal pathway used to degrade and turn over long-lived proteins and cytoplasmic organelles. Since autophagy was discovered, it has been thought to act as a pro-survival response to several stresses, especially starvation, at the cell and organism levels by providing recycled metabolic substrates to maintain energy homeostasis. However, several recent studies suggest that autophagy also plays a pro-death role through an autophagic cell death pathway mostly at the cellular level. The mechanism by which autophagy could perform these seemingly opposite roles as a pro-survival and a pro-death mechanism remained elusive until recently. Using C. elegans as a model system, we found that physiological levels of autophagy promote optimal survival of C. elegans during starvation, but either insufficient or excessive levels of autophagy render C. elegans starvation-hypersensitive. Furthermore, we found that muscarinic acetylcholine receptor signaling is important in modulating the level of autophagy during starvation, perhaps through DAP kinase and RGS-2. Our recent study provides in vivo evidence that levels of autophagy are critical in deciding its promotion of either survival or death: Physiological levels of autophagy are pro-survival, whereas insufficient or excessive levels of autophagy are pro-death.  相似文献   

11.
12.
In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.  相似文献   

13.
14.
Lamb RF 《Molecular cell》2012,45(6):705-706
The PI3K pathway promotes insulin signaling to regulate metabolism and survival and is subject to multiple inhibitory feedback loops. In this issue of Molecular Cell,Comb et al. (2012) provide evidence indicating that the PI3K pathway is negatively regulated in a new way: by NFkB signaling during nutrient starvation.  相似文献   

15.
16.
17.
The v-Crk oncogene encodes an adaptor protein containing an SH2 domain and an SH3 domain. v-Crk-transformed fibroblast cells display enhanced tyrosine phosphorylation levels, and the v-Crk protein localizes in focal adhesions, suggesting that transformation may be due to enhanced focal complex signaling. Here we investigated the mechanism of transformation and found that v-Crk-transformed NIH 3T3 cells display growth rates and serum requirements similar to control cells. However, v-Crk enhanced survival in conditions of serum starvation. Both an intact SH2 and SH3 domain are required; moreover, SH2 mutants displayed dominant interfering properties, enhancing cell death. Using other cell death-inducing stimuli, it appeared that v-Crk in general inhibits apoptosis and enhances cell survival. In search of the signaling pathways involved, we found that v-Crk-transformed cells show constitutively higher levels of phospho-protein kinase B (PKB)/Akt and PKB/Akt activity, especially in conditions of serum starvation. These data strongly suggest involvement of the phosphatidylinositol 3-kinase/PKB survival pathway in the v-Crk-induced protection against apoptosis. In accordance, inhibition of this pathway by wortmannin or LY924002 reduced protection against starvation-induced apoptosis. In addition to the phosphatidylinositol 3-kinase/PKB pathway, a MEK-dependent pathway and an unknown additional pathway are also implicated in resistance against apoptosis. Activation of survival pathways may be the most important function of v-Crk in its oncogenic properties.  相似文献   

18.
Pancreatic tumors are hypovascular, which leads to a poor nutrient supply to support the aggressively proliferating tumor cells. However, human pancreatic cancer cells have extreme resistance to nutrition starvation, which enables them to survive under severe metabolic stress conditions within the tumor microenvironment, a phenomenon known as “austerity” in cancer biology. Discovering agents which can preferentially inhibit the cancer cells’ ability to tolerate starvation conditions represents a new generation of anticancer agents. In this study, geranyl 2,4-dihydroxy-6-phenethylbenzoate (GDP), isolated from Boesenbergia pandurata rhizomes, exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition starvation conditions. GDP also possessed PANC-1 cell migration and colony formation inhibitory activities under normal nutrient-rich conditions. Mechanistically, GDP inhibited PI3K/Akt/mTOR/autophagy survival signaling pathway, leading to selective PANC-1 cancer cell death under the nutrition starvation condition. Therefore, GDP is a promising anti-austerity agent for drug development against pancreatic cancer.  相似文献   

19.
The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号