首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mortality from severe pediatric falciparum malaria appears low in Oceania but Plasmodium vivax is increasingly recognized as a cause of complications and death. The features and prognosis of mixed Plasmodium species infections are poorly characterized. Detailed prospective studies that include accurate malaria diagnosis and detection of co-morbidities are lacking.

Methods and Findings

We followed 340 Papua New Guinean (PNG) children with PCR-confirmed severe malaria (77.1% P. falciparum, 7.9% P. vivax, 14.7% P. falciparum/vivax) hospitalized over a 3-year period. Bacterial cultures were performed to identify co-incident sepsis. Clinical management was under national guidelines. Of 262 children with severe falciparum malaria, 30.9%, 24.8% and 23.2% had impaired consciousness, severe anemia, and metabolic acidosis/hyperlactatemia, respectively. Two (0.8%) presented with hypoglycemia, seven (2.7%) were discharged with neurologic impairment, and one child died (0.4%). The 27 severe vivax malaria cases presented with similar phenotypic features to the falciparum malaria cases but respiratory distress was five times more common (P = 0.001); one child died (3.7%). The 50 children with P. falciparum/vivax infections shared phenotypic features of mono-species infections, but were more likely to present in deep coma and had the highest mortality (8.0%; P = 0.003 vs falciparum malaria). Overall, bacterial cultures were positive in only two non-fatal cases. 83.6% of the children had alpha-thalassemia trait and seven with coma/impaired consciousness had South Asian ovalocytosis (SAO).

Conclusions

The low mortality from severe falciparum malaria in PNG children may reflect protective genetic factors other than alpha-thalassemia trait/SAO, good nutrition, and/or infrequent co-incident sepsis. Severe vivax malaria had similar features but severe P. falciparum/vivax infections were associated with the most severe phenotype and worst prognosis.  相似文献   

2.

Background

Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4) is important for invasion of human erythrocytes and may therefore be a target of protective immunity.

Methods

IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG). Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined.

Results

Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism.

Conclusions

Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.  相似文献   

3.

Background

In tropical Africa, where malaria is highly endemic, low grade infections are asymptomatic and the diagnosis of clinical malaria is usually based on parasite density. Here we investigate how changes in malaria control and endemicity modify diagnostic criteria of Plasmodium falciparum attacks.

Methods and Findings

Parasitological and clinical data from the population of Dielmo, Senegal, monitored during 20 years, are analyzed in a random-effect logistic regression model to investigate the relationship between the level of parasitemia and risk of fever. Between 1990 and 2010, P. falciparum prevalence in asymptomatic persons declined from 85% to 1% in children 0–3 years and from 34% to 2% in adults ≥50 years. Thresholds levels of parasitemia for attributing fever episodes to malaria decreased by steps in relation to control policies. Using baseline threshold during following periods underestimated P. falciparum attacks by 9.8–20.2% in children and 18.9–40.2% in adults. Considering all fever episodes associated with malaria parasites as clinical attacks overestimated P. falciparum attacks by 42.2–68.5% in children and 45.9–211.7% in adults.

Conclusions

Malaria control modifies in all age-groups the threshold levels of parasitemia to be used for the assessment of malaria morbidity and to guide therapeutic decisions. Even under declining levels of malaria endemicity, the parasite density method must remain the reference method for distinguishing malaria from other causes of fever and assessing trends in the burden of malaria.  相似文献   

4.

Background

Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.

Methods

A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.

Results

The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.

Conclusions

A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.

Trial Registration

Australian New Zealand Clinical Trials Registry ACTRN12610000896077  相似文献   

5.

Background

Combination therapies are now recommended to treat uncomplicated malaria. We used a longitudinal design to assess the incidence of malaria and compare the efficacies of 3 combination regimens in Kampala, Uganda.

Methodology/Principal Findings

Children aged 1–10 years were enrolled from randomly selected households in 2004–05 and 2007, and were followed at least monthly through 2008. Insecticide-treated bednets (ITNs) were provided in 2006. Children were randomized upon their first episode, and then treated for all episodes of uncomplicated malaria with amodiaquine/sulfadoxine-pyrimethamine (AQ/SP), artesunate/amodiaquine (AS/AQ), or artemether/lumefantrine (AL). Risks of parasitological failure were determined for each episode of uncomplicated malaria and clinical parameters were followed. A total of 690 children experienced 1464 episodes of malaria. 96% of these episodes were uncomplicated malaria and treated with study drugs; 94% were due to Plasmodium falciparum. The rank order of treatment efficacy was AL > AS/AQ > AQ/SP. Failure rates increased over time for AQ/SP, but not the artemisinin-based regimens. Over the 4-year course of the study the prevalence of asymptomatic parasitemia decreased from 11.8% to 1.4%, the incidence of malaria decreased from 1.55 to 0.32 per person year, and the prevalence of anemia (hemoglobin <10 gm/dL) decreased from 5.9% to 1.0%. No episodes of severe malaria (based on WHO criteria) and no deaths were seen.

Conclusions/Significance

With ready access to combination therapies and distribution of ITNs, responses were excellent for artemisinin-containing regimens, severe malaria was not seen, and the incidence of malaria and prevalence of parasitemia and anemia decreased steadily over time.

Trial Registration

isrctn.org ISRCTN37517549  相似文献   

6.

Background

Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4–8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.

Methods and Findings

To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.

Conclusions

These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria.  相似文献   

7.

Background

Whole malaria parasites are highly effective in inducing immunity against malaria. Due to the limited success of subunit based vaccines in clinical studies, there has been a renewed interest in whole parasite-based malaria vaccines. Apart from attenuated sporozoites, there have also been efforts to use live asexual stage parasites as vaccine immunogens.

Methodology and Results

We used radiation exposure to attenuate the highly virulent asexual blood stages of the murine malaria parasite P. berghei to a non-replicable, avirulent form. We tested the ability of the attenuated blood stage parasites to induce immunity to parasitemia and the symptoms of severe malaria disease. Depending on the mouse genetic background, a single high dose immunization without adjuvant protected mice from parasitemia and severe disease (CD1 mice) or from experimental cerebral malaria (ECM) (C57BL/6 mice). A low dose immunization did not protect against parasitemia or severe disease in either model after one or two immunizations. The protection from ECM was associated with a parasite specific antibody response and also with a lower level of splenic parasite-specific IFN-γ production, which is a mediator of ECM pathology in C57BL/6 mice. Surprisingly, there was no difference in the sequestration of CD8+ T cells and CD45+ CD11b+ macrophages in the brains of immunized, ECM-protected mice.

Conclusions

This report further demonstrates the effectiveness of a whole parasite blood-stage vaccine in inducing immunity to malaria and explicitly demonstrates its effectiveness against ECM, the most pathogenic consequence of malaria infection. This experimental model will be important to explore the formulation of whole parasite blood-stage vaccines against malaria and to investigate the immune mechanisms that mediate protection against parasitemia and cerebral malaria.  相似文献   

8.

Background

Amhara Regional State of Ethiopia has a population of approximately 19.6 million, is prone to unstable and epidemic malaria, and is severely affected by trachoma. An integrated malaria and trachoma control program is being implemented by the Regional Health Bureau. To provide baseline data, a survey was conducted during December 2006 to estimate malaria parasite prevalence, malaria indicators, prevalence of trachoma, and trachoma risk factors in households and people of all ages in each of the ten zones of the state, excluding three urban centers (0.4% of the population).

Methodology/Principal Findings

The study was designed to provide prevalence estimates at zone and state levels. Using multi-stage cluster random sampling, 16 clusters of 25 households were randomly selected in each of the ten zones. Household heads were interviewed for malaria indicators and trachoma risk factors (N = 4,101). All people were examined for trachoma signs (N = 17,242), and those in even-numbered households provided blood films for malaria parasite detection (N = 7,745); both thick and thin blood films were read.Zonal malaria parasite prevalence ranged from 2.4% to 6.1%, with the overall state-wide prevalence being 4.6% (95% confidence interval (CI): 3.8%–5.6%). The Plasmodium falciparum: Plasmodium vivax ratio ranged from 0.9–2.1 with an overall regional ratio of 1.2. A total of 14.8% of households reported indoor residual spraying in the past year, 34.7% had at least one mosquito net, and 16.1% had one or more long-lasting insecticidal net. Zonal trachoma prevalence (trachomatous inflammation follicular [WHO grade TF] in children aged 1–9 years) ranged from 12.6% to 60.1%, with the overall state-wide prevalence being 32.7% (95% CI: 29.2%–36.5%). State-wide prevalence of trachomatous trichiasis (TT) in persons aged over fifteen was 6.2% (95% CI: 5.3–7.4), and 0.3% (95% CI: 0.2–0.5) in children aged 0–14 years. Overall, an estimated 643,904 persons (lower bound 419,274, upper bound 975,635) have TT and require immediate corrective surgery.

Conclusions/Significance

The results provide extensive baseline data to guide planning, implementation, and evaluation of the integrated malaria and trachoma control program in Amhara. The success of the integrated survey is the first step towards demonstration that control of priority neglected tropical diseases can be integrated with one of the “big three” killer diseases.  相似文献   

9.

Background

Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs) which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax.

Methods and Findings

We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR) results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV) to nPCR (≥96.0%). LM was the least sensitive test (87.4%) and had the lowest NPV (89.7%), but had the highest specificity (99.1%) and positive predictive value (98.9%). For severe falciparum malaria (prevalence 42.9%), the findings were similar. For non-falciparum severe malaria (prevalence 6.9%), no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6%) and had the lowest NPV (96.7%).

Conclusions

RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.  相似文献   

10.

Background

Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines.

Methods and Findings

We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects.

Conclusion

Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.  相似文献   

11.

Background

Intermittent preventive treatment of malaria in children less than five years of age (IPTc) has been investigated as a measure to control the burden of malaria in the Sahel and sub-Sahelian areas of Africa where malaria transmission is markedly seasonal.

Methods and Findings

IPTc studies were identified using a systematic literature search. Meta-analysis was used to assess the protective efficacy of IPTc against clinical episodes of falciparum malaria. The impact of IPTc on all-cause mortality, hospital admissions, severe malaria and the prevalence of parasitaemia and anaemia was investigated. Three aspects of safety were also assessed: adverse reactions to study drugs, development of drug resistance and loss of immunity to malaria. Twelve IPTc studies were identified: seven controlled and five non-controlled trials. Controlled studies demonstrated protective efficacies against clinical malaria of between 31% and 93% and meta-analysis gave an overall protective efficacy of monthly administered IPTc of 82% (95%CI 75%–87%) during the malaria transmission season. Pooling results from twelve studies demonstrated a protective effect of IPTc against all-cause mortality of 57% (95%CI 24%–76%) during the malaria transmission season. No serious adverse events attributable to the drugs used for IPTc were observed in any of the studies. Data from three studies that followed children during the malaria transmission season in the year following IPTc administration showed evidence of a slight increase in the incidence of clinical malaria compared to children who had not received IPTc.

Conclusions

IPTc is a safe method of malaria control that has the potential to avert a significant proportion of clinical malaria episodes in areas with markedly seasonal malaria transmission and also appears to have a substantial protective effect against all-cause mortality. These findings indicate that IPTc is a potentially valuable tool that can contribute to the control of malaria in areas with markedly seasonal transmission.  相似文献   

12.

Background

Large studies on severe imported malaria in non-endemic industrialized countries are lacking. We sought to describe the clinical spectrum of severe imported malaria in French adults and to identify risk factors for mortality at admission to the intensive care unit.

Methodology and Principal Findings

Retrospective review of severe Plasmodium falciparum malaria episodes according to the 2000 World Health Organization definition and requiring admission to the intensive care unit. Data were collected from medical charts using standardised case-report forms, in 45 French intensive care units in 2000–2006. Risk factors for in-hospital mortality were identified by univariate and multivariate analyses.Data from 400 adults admitted to the intensive care unit were analysed, representing the largest series of severe imported malaria to date. Median age was 45 years; 60% of patients were white, 96% acquired the disease in sub-Saharan Africa, and 65% had not taken antimalarial chemoprophylaxis. Curative quinine treatment was used in 97% of patients. Intensive care unit mortality was 10.5% (42 deaths). By multivariate analysis, three variables at intensive care unit admission were independently associated with hospital death: older age (per 10-year increment, odds ratio [OR], 1.72; 95% confidence interval [95%CI], 1.28–2.32; P = 0.0004), Glasgow Coma Scale score (per 1-point decrease, OR, 1.32; 95%CI, 1.20–1.45; P<0.0001), and higher parasitemia (per 5% increment, OR, 1.41; 95%CI, 1.22–1.62; P<0.0001).

Conclusions and Significance

In a large population of adults treated in a non-endemic industrialized country, severe malaria still carried a high mortality rate. Our data, including predictors of death, can probably be generalized to other non-endemic countries where high-quality healthcare is available.  相似文献   

13.

Background

Measuring progress towards Millennium Development Goal 6, including estimates of, and time trends in, the number of malaria cases, has relied on risk maps constructed from surveys of parasite prevalence, and on routine case reports compiled by health ministries. Here we present a critique of both methods, illustrated with national incidence estimates for 2009.

Methods and Findings

We compiled information on the number of cases reported by National Malaria Control Programs in 99 countries with ongoing malaria transmission. For 71 countries we estimated the total incidence of Plasmodium falciparum and P. vivax by adjusting the number of reported cases using data on reporting completeness, the proportion of suspects that are parasite-positive, the proportion of confirmed cases due to each Plasmodium species, and the extent to which patients use public sector health facilities. All four factors varied markedly among countries and regions. For 28 African countries with less reliable routine surveillance data, we estimated the number of cases from model-based methods that link measures of malaria transmission with case incidence. In 2009, 98% of cases were due to P. falciparum in Africa and 65% in other regions. There were an estimated 225 million malaria cases (5th–95th centiles, 146–316 million) worldwide, 176 (110–248) million in the African region, and 49 (36–68) million elsewhere. Our estimates are lower than other published figures, especially survey-based estimates for non-African countries.

Conclusions

Estimates of malaria incidence derived from routine surveillance data were typically lower than those derived from surveys of parasite prevalence. Carefully interpreted surveillance data can be used to monitor malaria trends in response to control efforts, and to highlight areas where malaria programs and health information systems need to be strengthened. As malaria incidence declines around the world, evaluation of control efforts will increasingly rely on robust systems of routine surveillance. Please see later in the article for the Editors'' Summary  相似文献   

14.

Background

Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.

Methods

A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.

Results

Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.

Conclusion

Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.  相似文献   

15.

Background

Plasmodium vivax is responsible for a significant proportion of malaria cases worldwide and is increasingly reported as a cause of severe disease. The objective of this study was to characterize severe vivax disease among children hospitalized in intensive care units (ICUs) in the Western Brazilian Amazon, and to identify risk factors associated with disease severity.

Methods and Findings

In this retrospective study, clinical records of 34 children, 0–14 years of age hospitalized in the 11 public pediatric and neonatal ICUs of the Manaus area, were reviewed. P. falciparum monoinfection or P. falciparum/P. vivax mixed infection was diagnosed by microscopy in 10 cases, while P. vivax monoinfection was confirmed in the remaining 24 cases. Two of the 24 patients with P. vivax monoinfection died. Respiratory distress, shock and severe anemia were the most frequent complications associated with P. vivax infection. Ninety-one children hospitalized with P. vivax monoinfections but not requiring ICU were consecutively recruited in a tertiary care hospital for infectious diseases to serve as a reference population (comparators). Male sex (p = 0.039), age less than five years (p = 0.028), parasitemia greater than 500/mm3 (p = 0.018), and the presence of any acute (p = 0.023) or chronic (p = 0.017) co-morbidity were independently associated with ICU admission. At least one of the WHO severity criteria for malaria (formerly validated for P. falciparum) was present in 23/24 (95.8%) of the patients admitted to the ICU and in 17/91 (18.7%) of controls, making these criteria a good predictor of ICU admission (p = 0.001). The only investigated criterion not associated with ICU admission was hyperbilirubinemia (p = 0.513)].

Conclusions

Our study points to the importance of P. vivax-associated severe disease in children, causing 72.5% of the malaria admissions to pediatric ICUs. WHO severity criteria demonstrated good sensitivity in predicting severe P. vivax infection in this small case series.  相似文献   

16.

Background

In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists.

Materials and Methods

We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period.

Discussion

Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation.

Conclusion

The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies.  相似文献   

17.

Background

Childhood anaemia is considered a severe public health problem in most countries of sub-Saharan Africa. We investigated the geographical distribution of prevalence of anaemia and mean haemoglobin concentration (Hb) in children aged 1–4 y (preschool children) in West Africa. The aim was to estimate the geographical risk profile of anaemia accounting for malnutrition, malaria, and helminth infections, the risk of anaemia attributable to these factors, and the number of anaemia cases in preschool children for 2011.

Methods and Findings

National cross-sectional household-based demographic health surveys were conducted in 7,147 children aged 1–4 y in Burkina Faso, Ghana, and Mali in 2003–2006. Bayesian geostatistical models were developed to predict the geographical distribution of mean Hb and anaemia risk, adjusting for the nutritional status of preschool children, the location of their residence, predicted Plasmodium falciparum parasite rate in the 2- to 10-y age group (Pf PR2–10), and predicted prevalence of Schistosoma haematobium and hookworm infections. In the four countries, prevalence of mild, moderate, and severe anaemia was 21%, 66%, and 13% in Burkina Faso; 28%, 65%, and 7% in Ghana, and 26%, 62%, and 12% in Mali. The mean Hb was lowest in Burkina Faso (89 g/l), in males (93 g/l), and for children 1–2 y (88 g/l). In West Africa, severe malnutrition, Pf PR2–10, and biological synergisms between S. haematobium and hookworm infections were significantly associated with anaemia risk; an estimated 36.8%, 14.9%, 3.7%, 4.2%, and 0.9% of anaemia cases could be averted by treating malnutrition, malaria, S. haematobium infections, hookworm infections, and S. haematobium/hookworm coinfections, respectively. A large spatial cluster of low mean Hb (<80 g/l) and maximal risk of anaemia (>95%) was predicted for an area shared by Burkina Faso and Mali. We estimate that in 2011, approximately 6.7 million children aged 1–4 y are anaemic in the three study countries.

Conclusions

By mapping the distribution of anaemia risk in preschool children adjusted for malnutrition and parasitic infections, we provide a means to identify the geographical limits of anaemia burden and the contribution that malnutrition and parasites make to anaemia. Spatial targeting of ancillary micronutrient supplementation and control of other anaemia causes, such as malaria and helminth infection, can contribute to efficiently reducing the burden of anaemia in preschool children in Africa. Please see later in the article for the Editors'' Summary  相似文献   

18.

Background

Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis.

Methodology/Principal Findings

C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O2, 3.0 ATA, 1–2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-α, IFN-γ and IL-10 mRNA levels and percentage of γδ and αβ CD4+ and CD8+ T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB) dysfunction and hypothermia.

Conclusions/Significance

The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.  相似文献   

19.
20.

Background

In malaria endemic regions people are commonly infected with multiple species of malaria parasites but the clinical impact of these Plasmodium co-infections is unclear. Differences in transmission seasonality and transmission intensity between endemic regions have been suggested as important factors in determining the effect of multiple species co-infections.

Principal Findings

In order to investigate the impact of multiple-species infections on clinical measures of malaria we carried out a cross-sectional community survey in Malawi, in 2002. We collected clinical and parasitological data from 2918 participants aged >6 months, and applied a questionnaire to measure malaria morbidity. We examined the effect of transmission seasonality and intensity on fever, history of fever, haemoglobin concentration ([Hb]) and parasite density, by comparing three regions: perennial transmission (PT), high intensity seasonal transmission (HIST) and low intensity seasonal transmission (LIST). These regions were defined using multi-level modelling of PCR prevalence data and spatial and geo-climatic measures. The three Plasmodium species (P. falciparum, P. malariae and P. ovale) were randomly distributed amongst all children but not adults in the LIST and PT regions. Mean parasite density in children was lower in the HIST compared with the other two regions. Mixed species infections had lower mean parasite density compared with single species infections in the PT region. Fever rates were similar between transmission regions and were unaffected by mixed species infections. A history of fever was associated with single species infections but only in the HIST region. Reduced mean [Hb] and increased anaemia was associated with perennial transmission compared to seasonal transmission. Children with mixed species infections had higher [Hb] in the HIST region.

Conclusions

Our study suggests that the interaction of Plasmodium co-infecting species can have protective effects against some clinical outcomes of malaria but that this is dependent on the seasonality and intensity of malaria transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号