首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness (Sg), insulin sensitivity (Si), and the disposition index (DI), only Si can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring Si in lean and obese mice. Insulin-resistant mice had increased first-phase insulin secretion, decreased Sg, and a reduced DI, qualitatively similar to humans. Intriguingly, although insulin secretion explained most of the variation in glucose disposal in lean mice, Sg and the DI more strongly predicted glucose disposal in obese mice. DI curves identified individual diet-induced obese (DIO) mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, Sg, and DI, and further validates the mouse as a model of metabolic disease.  相似文献   

2.
Zinc improves both insulin secretion and insulin sensitivity, and exerts insulin-like effects. We investigated its acute effects on the parameters of glucose assimilation determined with the minimal model technique from frequent sampling intravenous glucose tolerance test (FSIVGTT) in seven healthy volunteers. FSIVGTTs (0.5 g/kg of glucose, followed by 2 U insulin iv injection at 19 min) were performed after the subjects had taken 20 mg zinc gluconate twice (the evening before and 30 min before the beginning of the test) or placebo pills (simple blind randomized protocol). Glucose assimilation was analyzed by calculating Kg (slope of the exponential decrease in glycemia), glucose effectiveness Sg (i.e., ability of glucose itself to increase its own disposal independent of insulin response), and SI (insulin sensitivity, i.e. the effect of increases in insulinemia on glucose disposal). The two latter parameters were calculated by fitting the experimental data with the two equations of Bergman’s “minimal model”. Zinc increased Kg (p<0.05) and Sg (p<0.05), whereas SI and insulin first-phase secretion did not significantly increase. This study suggests that zinc improves glucose assimilation, as evidenced by the increase in Kg, and that this improvement results mainly from an increase in glucose effectiveness (insulin-like effect), rather than an action on insulin response or insulin sensitivity.  相似文献   

3.
Impaired insulin secretion in type 2 diabetes is characterized by decreased first-phase insulin secretion, an increased proinsulin-to-insulin molar ratio in plasma, abnormal pulsatile insulin release, and heightened disorderliness of insulin concentration profiles. In the present study, we tested the hypothesis that these abnormalities are at least partly reversed by a period of overnight suspension of beta-cell secretory activity achieved by somatostatin infusion. Eleven patients with type 2 diabetes were studied twice after a randomly ordered overnight infusion of either somatostatin or saline with the plasma glucose concentration clamped at approximately 8 mmol/l. Controls were studied twice after overnight saline infusions and then at a plasma glucose concentration of either 4 or 8 mmol/l. We report that in patients with type 2 diabetes, 1) as in nondiabetic humans, insulin is secreted in discrete insulin secretory bursts; 2) the frequency of pulsatile insulin secretion is normal; 3) the insulin pulse mass is diminished, leading to decreased insulin secretion, but this defect can be overcome acutely by beta-cell rest with somatostatin; 4) the reported loss of orderliness of insulin secretion, attenuated first-phase insulin secretion, and elevated proinsulin-to-insulin molar ratio also respond favorably to overnight inhibition by somatostatin. The results of these clinical experiments suggest the conclusion that multiple parameters of abnormal insulin secretion in patients with type 2 diabetes mechanistically reflect cellular depletion of immediately secretable insulin that can be overcome by beta-cell rest.  相似文献   

4.
It is commonly accepted that insulin secretion follows the pattern of an inverted U, also termed 'Starling's curve of the pancreas' during the natural history of hyperglycemia in glucose intolerance and type 2 diabetes. This concept is based on the cross-sectional observation that insulin concentrations initially increase when insulin sensitivity declines (as a consequence of obesity, for example) and decrease when glucose tolerance deteriorates (impaired glucose tolerance or overt type 2 diabetes). The initial increase in insulin concentrations has been viewed as 'hypersecretion' of insulin, thought to indicate that beta cell dysfunction is not etiological but secondary in nature. However, this view is oblivious to the now well-established fact that assessment of insulin secretion must account for individual insulin sensitivity. Here, we revisit the concept of Starling's curve of the pancreas based on first-phase C-peptide concentrations (hyperglycemic clamp) from subjects with normal glucose tolerance (n=66), impaired glucose tolerance (n=19) and mild type 2 diabetes (n=9). In absolute terms, first-phase C-peptide concentrations plotted against increasing fasting glucose concentrations indeed followed an inverted U. However, adjusted for direct and indirect measures of insulin sensitivity (insulin sensitivity index from the hyperglycemic clamp, body mass index, age and sex), first-phase C-peptide concentrations of the same individuals tended to decrease steadily. In conclusion, while the Starling curve exists for insulin concentrations, and perhaps also for insulin secretion, it does not hold for beta-cell function if that term were to imply appropriateness of insulin secretion (based on a formal test of glucose-stimulated insulin secretion) for the degree of insulin resistance, as it should.  相似文献   

5.
Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single β-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.  相似文献   

6.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

7.
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.  相似文献   

8.
AIMS: Amylin is a second beta-cell hormone that is normally co-secreted with insulin in response to meals; it complements the effects of insulin in postprandial glucose control, in part by suppressing glucagon secretion. In patients with type 2 diabetes, mealtime administration of the human amylin analog pramlintide markedly improves postprandial glucose excursions. The aim of this study was to examine whether pramlintide reduces the postprandial hyperglucagonemia that is often seen in this patient population. METHODS: Utilizing a single-blind, placebo-controlled crossover design, 24 patients with type 2 diabetes, 12 insulin-treated and 12 non-insulin-treated, underwent a standardized mixed meal test on 2 occasions during which they received, in randomized order, a five-hour intravenous infusion of placebo or pramlintide (100 microg/h). RESULTS: During the placebo infusion, plasma glucose and plasma glucagon concentrations increased substantially after the meal. During the pramlintide infusion, postprandial plasma glucose and plasma glucagon responses were significantly (p < 0.05, all) reduced following ingestion of the same meal, both in the insulin-treated and non-insulin-treated subgroups. CONCLUSION: Supplementation of mealtime amylin with pramlintide reduces postprandial hyperglucagonemia in patients with type 2 diabetes, a mechanism that likely contributes to pramlintide's postprandial glucose-lowering effect.  相似文献   

9.
Glucagon dysregulation is an essential component in the pathophysiology of type 2 diabetes. Studies in vitro and in animal models have shown that zinc co-secreted with insulin suppresses glucagon secretion. Zinc supplementation improves blood glucose control in patients with type 2 diabetes, although there is little information about how zinc supplementation may affect glucagon secretion. The objective of this study was to evaluate the effect of 1-year zinc supplementation on fasting plasma glucagon concentration and in response to intravenous glucose and insulin infusion in patients with type 2 diabetes. A cross-sectional study was performed after 1-year of intervention with 30 mg/day zinc supplementation or a placebo on 28 patients with type 2 diabetes. Demographic, anthropometric, and biochemical parameters were determined. Fasting plasma glucagon and in response to intravenous glucose and insulin infusion were evaluated. Patients of both placebo and supplemented groups presented a well control of diabetes, with mean values of fasting blood glucose and glycated hemoglobin within the therapeutic goals established by ADA. No significant differences were observed in plasma glucagon concentration, glucagon/glucose ratio or glucagon/insulin ratio fasting, after glucose or after insulin infusions between placebo and supplemented groups. No significant effects of glucose or insulin infusions were observed on plasma glucagon concentration. One-year zinc supplementation did not affect fasting plasma glucagon nor response to intravenous glucose or insulin infusion in well-controlled type 2 diabetes patients with an adequate zinc status.  相似文献   

10.
The incretin mimetic exenatide improved glycemic control and reduced body weight in patients with type 2 diabetes inadequately controlled with metformin+/-a sulfonylurea. We assessed postprandial beta-cell function by mathematical modeling, independent of confounding effects from differing ambient glucose levels among treatments. Subjects were 63% males, 55+/-10 years, BMI 33+/-6 kg/m2, HbA1C 8.1+/-1.1% (+/- SD) randomized to 5 microg exenatide or placebo twice daily for 4 weeks. Subsequently, one arm remained at 5 microg twice daily, one arm escalated to 10 microg twice daily, and one treatment arm remained on placebo for 26 weeks. Subjects continued metformin+/-a sulfonylurea. A subset with meal tests at baseline and week 30 were analyzed (n=73). Outcome measures were the model-based beta-cell function parameters dose-response relating insulin secretion to glucose concentration, rate sensitivity, and potentiation. Exenatide reduced postprandial glucose excursions. Modeling predicted an upward shift of the beta-cell dose-response. Model-predicted insulin secretion rate at a reference glucose concentration increased 72% (10 microg), increased 40% (5 microg), or decreased 21% (placebo) at week 30 [ p=0.015 (10 microg); p=0.045 (5 microg); vs. placebo]. At week 30, the 2-hour post-meal to basal potentiation factor ratio was increased to 1.53+/-0.10 (10 microg; p=0.0142 vs. placebo) or 1.40+/-0.08 (5 microg; p=0.0402 vs. placebo) compared with 1.15+/-0.06 (placebo). Exenatide caused an upward shift of the beta-cell dose-response and enhanced potentiation of insulin secretion. This model suggests exenatide improved beta-cell function in patients with type 2 diabetes treated with metformin+/-a sulfonylurea.  相似文献   

11.
Recent dietary guidelines advocate increased starch intake, but it is not clear as to how the increased intake of starch should be achieved. Recent data suggest that the quality of starch as well as its quantity is important in determining the biological effects of high carbohydrate diets. The quality of starchy foods can be assessed by their rates of digestion, which in turn are related to their glycaemic responses. Many factors affect the rate of digestion of foods and these are probably related to alterations in the chemical structure or nature of the starch. The incorporation of slowly digested, low glycaemic index foods into the diets of healthy subjects and individuals with diabetes and hyperlipidaemia is associated with the predicted reductions in postprandial glycaemic responses and with reductions in insulin secretion and blood lipids. In the past, the aim of starch processing has been to increase digestibility and improve absorption. However, it is now suggested that the use of more slowly digested starchy foods may have positive health benefits.  相似文献   

12.
Elevated plasma FFA cause beta-cell lipotoxicity and impair insulin secretion in nondiabetic subjects predisposed to type 2 diabetes mellitus [T2DM; i.e., with a strong family history of T2DM (FH+)] but not in nondiabetic subjects without a family history of T2DM. To determine whether lowering plasma FFA with acipimox, an antilipolytic nicotinic acid derivative, may enhance insulin secretion, nine FH+ volunteers were admitted twice and received in random order either acipimox or placebo (double-blind) for 48 h. Plasma glucose/insulin/C-peptide concentrations were measured from 0800 to 2400. On day 3, insulin secretion rates (ISRs) were assessed during a +125 mg/dl hyperglycemic clamp. Acipimox reduced 48-h plasma FFA by 36% (P < 0.001) and increased the plasma C-peptide relative to the plasma glucose concentration or DeltaC-peptide/Deltaglucose AUC (+177%, P = 0.02), an index of improved beta-cell function. Acipimox improved insulin sensitivity (M/I) 26.1 +/- 5% (P < 0.04). First- (+19 +/- 6%, P = 0.1) and second-phase (+31 +/- 6%, P = 0.05) ISRs during the hyperglycemic clamp also improved. This was particularly evident when examined relative to the prevailing insulin resistance [1/(M/I)], as both first- and second-phase ISR markedly increased by 29 +/- 7 (P < 0.05) and 41 +/- 8% (P = 0.02). There was an inverse correlation between fasting FFA and first-phase ISR (r2 = 0.31, P < 0.02) and acute (2-4 min) glucose-induced insulin release after acipimox (r2 =0.52, P < 0.04). In this proof-of-concept study in FH+ individuals predisposed to T2DM, a 48-h reduction of plasma FFA improves day-long meal and glucose-stimulated insulin secretion. These results provide additional evidence for the important role that plasma FFA play regarding insulin secretion in FH+ subjects predisposed to T2DM.  相似文献   

13.
Metformin improves insulin sensitivity, which is correlated to phospholipid fatty acid composition in obese type 2 diabetics. We aimed at investigating the relationship between Metformin and fatty acids in obese insulin resistant non-diabetic individuals. A double-blind, placebo-controlled 20-week trial was performed in 21 BMI and age-matched insulin resistant non-diabetic individuals receiving either Metformin or placebo. Insulin sensitivity together with metabolic parameters and fatty acids in serum phospholipids were measured at baseline and at 20 weeks. A significant decrease in body weight, BMI, percentage body fat, the sum of saturated fatty acids in serum phospholipids and increase in insulin sensitivity index were observed following the 20-week treatment. These changes did not differ significantly between the groups. Energy restriction rather than Metformin treatment appears to be responsible for the observed changes. The associations previously found in diabetics between insulin sensitivity and phospholipid fatty acids may not be mediated by Metformin.  相似文献   

14.
Incretin secretion and effect on insulin secretion are not fully understood in patients with type 2 diabetes. We investigated incretin and insulin secretion after meal intake in obese and non-obese Japanese patients with type 2 diabetes compared to non-diabetic subjects. Nine patients with type 2 diabetes and 5 non-diabetic subjects were recruited for this study. Five diabetic patients were obese (BMI ? 25) and 4 patients were non-obese (BMI < 25). In response to a mixed meal test, the levels of immunoreactive insulin during 15-90 min and C-peptide during 0-180 min in non-obese patients were significantly lower than those in obese patients. Total GLP-1 and active GIP levels showed no significant difference between obese and non-obese patients throughout the meal tolerance test. In addition, there were no significant differences between diabetic patients and non-diabetic subjects. In conclusion, incretin secretion does not differ between Japanese obese and non-obese patients with type 2 diabetes and non-diabetic subjects.  相似文献   

15.

Background

Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients.

Methodology

The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp.

Principal Findings

We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07–1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications.

Conclusions

Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism.  相似文献   

16.
We examined the inhibitory effect of a single ingestion of bread containing resistant starch (bread containing about 6 g of resistant starch derived from tapioca per 2 slices) (test food) on the postprandial increase in blood glucose in male and female adults with a fasting blood glucose level between 100 and 140 mg/dl. Bread not containing resistant starch (placebo) was used as the control.The study was conducted in 20 subjects (9 men and 11 women with a mean age of 50.5+/-7.5 years) using the crossover method, with a single ingestion of either bread containing resistant starch or the placebo. Blood glucose and insulin were measured before ingestion, and at 0.5, 1, 1.5, and 2 h after ingestion. The blood glucose level before ingestion was stratified into a borderline group (blood glucose level >/= 111 mg/dl) and a normal group (blood glucose level 相似文献   

17.
The prevalence of type 2 diabetes has been rapidly increasing in conjunction with the westernization of diet patterns in Asia. We determined whether the antecedent consumption of traditional Asian-style diets (ADs) deteriorates insulin action, insulin secretion and pancreatic beta-cell mass after subsequent imposition of the diabetogenic challenge of Western-style diets (WDs) in weaning male Sprague-Dawley rats. Rats were provided AD (a low-fat and plant protein diet), WD (a high-fat and animal protein diet) or a control diet (CD) (a low-fat and animal protein diet) for 12 weeks. After 12 weeks, the groups were divided into two subsets; one set of the groups continued to consume their previous diets of WD, AD and CD for another 12 weeks, and the second set was divided into three groups represented by a switch in their designated diets from WD to AD, AD to WD and CD to WD. Whole-body glucose disposal rates and GLUT4 contents in soleus muscles were lower in WD regardless of the antecedent protein sources. The first-phase insulin secretion was higher in the CD group than in the other groups, whereas the second phase was lowered with AD consumption as antecedent and/or present diets. Asian-style diet and AD-WD intake did not compensate for insulin resistance due to the failure of beta-cell expansion via decreased proliferation. These findings suggest that the antecedent consumption of AD possibly accelerates and augments the development of glucose dysregulation via decreased insulin secretion capacity and pancreatic beta-cell mass when the diets switch to WD.  相似文献   

18.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

19.
The effect of alloxan-diabetes and insulin treatment in bile acid pool size and composition, bile acid secretion and cholic acid synthesis was investigated in the rat. The size of the cholate pool was significantly increased 4 days after diabetes induction. It reached a constant size three times that of control animals after 2 weeks of diabetes. Changes in bile acid pool size and secretion were directly dependent of the insulin deficiency state since they were reversed by insulin treatment and were not influenced by the caloric intake of the animal nor the pharmacologic effect of alloxan. Biliary cholate secretion was also 3-fold increased in diabetic rats and it accounted for more than 80% of the total bile acids compared to 60% in the control group. The calculated daily rate of cholate synthesis was increased in diabetic rats and the circadian rhythm of cholate synthesis was abolished in this condition. Therefore, it was shown that the negative feedback mechanism that regulates bile acid snythesis was deleted in diabetes. This mechanism was partially restored after 2 weeks of insulin treatment. These studies demonstrated that bile acid metabolism was profoundly changed in alloxan-diabetic rats and suggested that insulin may play an important role in the regulation of bile acid snythesis and intestinal absorption.  相似文献   

20.
Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic β-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic β-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor α leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-γ coactivator Δα and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1α expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号