首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs.

Methodology/Principal Findings

By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an α,β unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus.

Conclusions/Significance

Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.  相似文献   

2.

Introduction

Pseudomonas aeruginosa and Acinetobacter spp. are found to be associated with biofilm and metallo-β-lactamase production and are the common causes of serious infections mainly in hospitalized patients. So, the main aims of this study were to determine the rates of biofilm production and metallo beta-lactamase production (MBL) among the strains of Pseudomonas aeruginosa and Acinetobacter spp. isolated from hospitalized patients.

Methods

A total of 85 P. aeruginosa isolates and 50 Acinetobacter spp. isolates isolated from different clinical specimens from patients admitted to Shree Birendra Hospital, Kathmandu, Nepal from July 2013 to May 2014 were included in this study. The bacterial isolates were identified with the help of biochemical tests. Modified Kirby-Bauer disc diffusion technique was used for antimicrobial susceptibility testing. Combined disc diffusion technique was used for the detection of MBL production, while Congo red agar method and tube adherence method were used for detection of biofilm production.

Results

Around 16.4% of P. aeruginosa isolates and 22% of the strains of Acinetobacter spp. were metallo β-lactamase producers. Out of 85 P. aeruginosa isolates, 23 (27.05%) were biofilm producers according to tube adherence test while, only 13 (15.29%) were biofilm producers as per Congo red agar method. Similarly, out of 50 Acinetobacter spp. 7 (14%) isolates were biofilm producers on the basis of tube adherence test, while only 5 (10%) were positive for biofilm production by Congo red agar method. Highest rates of susceptibility of P. aeruginosa as well as Acinetobacter spp. were seen toward colistin.

Conclusion

In our study, biofilm production and metallo beta-lactamase production were observed among Pseudomonas aeruginosa and Acinetobacter spp. However, no statistically significant association could be established between biofilm production and metallo beta-lactamase production.
  相似文献   

3.
In a process called quorum sensing, bacteria monitor their population density via extracellular signaling molecules and modulate gene expression accordingly. In this paper, a one-dimensional model of a growing Pseudomonas aeruginosa biofilm is examined. Quorum sensing has been included in the model through equations describing the production, degradation, and diffusion of the signaling molecules, acyl-homoserine lactones, in the biofilm. From this model, we are able to make some important observations about quorum sensing. First, in order for quorum sensing to initiate near the substratum, in accordance with experimental observations, the model suggests that cells in oxygen-deficient regions of the biofilm must still be synthesizing the signal compound. Second, the induction of quorum sensing is related to a critical biofilm depth; once the biofilm grows to the critical depth, quorum sensing is induced. Third, the critical biofilm depth varies with the pH of the surrounding fluid. Of particular interest is the prediction of a critical pH threshold, above which quorum sensing is not possible at any depth. These results highlight the importance of careful study of the relationship among metabolic activity of the bacterium, signal synthesis, and the chemistry of the surrounding environment.  相似文献   

4.

Background

Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence.

Findings

By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin.

Conclusions

Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0012-0) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background  

LuxS is the synthase enzyme of the quorum sensing signal AI-2. In Salmonella Typhimurium, it was previously shown that a luxS deletion mutant is impaired in biofilm formation. However, this phenotype could not be complemented by extracellular addition of quorum sensing signal molecules.  相似文献   

6.
7.
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.  相似文献   

8.
In a process called quorum sensing, bacteria monitor their population density via extracellular signaling molecules and modulate gene expression accordingly. This paper describes a one-dimensional model of a growing Pseudomonas aeruginosa biofilm. Quorum sensing has been included in the model by the addition of equations describing the production, degradation, and diffusion of acyl-homoserine lactones in the biofilm. In order for quorum sensing to initiate near the substratum, in accordance with experimental observations, model results suggest that cells in oxygen-deficient regions of the biofilm must still be synthesizing the signal compound. This result highlights the importance of careful study of the relationship between metabolic activity of the bacterium and signal synthesis. Received 11 March 2002/ Accepted in revised form 01 August 2002  相似文献   

9.

Background:

N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming uropathogenic E. coli (UPEC) isolated from urine samples of the patients with urinary tract infections (UTIs) in Kerman, Iran.

Methods:

Thirty-five UPEC isolates were obtained from urine samples of the patients with UTIs referred to the Afzalipoor hospital. The isolates were identified by biochemical tests. Biofilm analyses of all the isolates were performed using the microtiter plate method at OD 490nm. N-Acyl homoserine lactone was separated from cell mass supernatants by liquid-liquid extraction (LLE) and analyzed by a colorimetric method. N-Acyl homoserine lactone functional groups were identified by Fourier Transform-Infrared Spectroscopy (FT-IR).

Results:

The biofilm formation assay identified 10 (28.57%) isolates with strong, 16 (45.71%) with moderate, and 9 (25.71%) with weak biofilm activities. The UPEC isolates with strong and weak biofilm activities were subjected to AHL analyses. It was found that isolates with the highest AHL activities also exhibited strong adherence to microplate wells (P≤0.05). Two E. coli isolates with the highest AHL activities were selected for FT-IR spectroscopy. Peaks at 1764.33, 1377.99, and 1242.90 cm-1 correspond to the C=O bond of the lactone ring, and the N=H and C-O bonds of the acyl chain, respectively.

Conclusion:

We found that many UPEC isolates exhibited strong biofilm formation. The control of this property by AHL may contribute to the pathogenesis of the organism in UTI’s.Key Words: Biofilm, FT-IR, N-acylhomoserine lactone, Uropathogenic Escherichia coli  相似文献   

10.

Objectives

To determine the in vitro activity of antibiotics, including arbekacin, cefminox, fosfomycin and biapenem which are all still unavailable in India, against Gram-negative clinical isolates.

Methods

We prospectively collected and tested all consecutive isolates of Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa and Acinetobacter spp. from blood, urine and sputum samples between March and November 2012. The minimum inhibition concentration (MIC) of 16 antibiotics was determined by the broth micro-dilution method.

Results

Overall 925 isolates were included; 211 E. coli, 207 Klebsiella spp., 153 P. aeruginosa, and 354 Acinetobacter spp. The MIC50 and MIC90 were high for cefminox, biapenem and arbekacin for all pathogens but interpretative criteria were not available. The MIC50 was categorized as susceptible for a couple of antibiotics, including piperacillin/tazobactam, carbapenems and amikacin, for E. coli, Klebsiella spp. and P. aeruginosa. However, for Acinetobacter spp., the MIC50 was categorized as susceptible only for colistin. On the other hand, fosfomycin was the only antibiotic that inhibited 90% of E. coli and Klebsiella spp. isolates, while 90% of P. aeruginosa isolates were inhibited only by colistin. Finally, 90% of Acinetobacter spp. isolates were not inhibited by any antibiotic tested.

Conclusion

Fosfomycin and colistin might be promising antibiotics for the treatment of infections due to E. coli or Klebsiella spp. and P. aeruginosa, respectively, in India; however, clinical trials should first corroborate the in vitro findings. The activity of tigecycline should be evaluated, as this is commonly used as last-resort option for the treatment of multidrug-resistant Acinetobacter infections.  相似文献   

11.

Background

Stenotrophomonas maltophilia is emerging as one of the most frequently found bacteria in chronic pulmonary infection. Biofilm is increasingly recognized as a contributing factor to disease pathogenesis. In the present study, a total of 37 isolates of S. maltophilia obtained from chronic pulmonary infection patients were evaluated to the relationship between biofilm production and the relative genes expression.

Methods

The clonal relatedness of isolates was determined by pulse-field gel electrophoresis. Biofilm formation assays were performed by crystal violet assay, and confirmed by Electron microscopy analysis and CLSM analysis. PCR was employed to learn gene distribution and expression.

Results

Twenty-four pulsotypes were designated for 37 S. maltophilia isolates, and these 24 pulsotypes exhibited various levels of biofilm production, 8 strong biofilm-producing S. maltophilia strains with OD492 value above 0.6, 14 middle biofilm-producing strains with OD492 average value of 0.4 and 2 weak biofilm-producing strains with OD492 average value of 0.19. CLSM analysis showed that the isolates from the early stage of chronic infection enable to form more highly structured and multilayered biofim than those in the late stage. The prevalence of spgM, rmlA, and rpfF genes was 83.3%, 87.5%, and 50.0% in 24 S. maltophilia strains, respectively, and the presence of rmlA, spgM or rpfF had a close relationship with biofilm formation but did not significantly affect the mean amount of biofilm. Significant mutations of spgM and rmlA were found in both strong and weak biofilm-producing strains.

Conclusion

Mutations in spgM and rmlA may be relevant to biofilm formation in the clinical isolates of S. maltophilia.  相似文献   

12.

Background

Nosocomial bloodstream infections (nBSIs) are an important cause of morbidity and mortality and are the most frequent type of nosocomial infection in pediatric patients.

Methods

We identified the predominant pathogens and antimicrobial susceptibilities of nosocomial bloodstream isolates in pediatric patients (≤16 years of age) in the Brazilian Prospective Surveillance for nBSIs at 16 hospitals from 12 June 2007 to 31 March 2010 (Br SCOPE project).

Results

In our study a total of 2,563 cases of nBSI were reported by hospitals participating in the Br SCOPE project. Among these, 342 clinically significant episodes of BSI were identified in pediatric patients (≤16 years of age). Ninety-six percent of BSIs were monomicrobial. Gram-negative organisms caused 49.0% of these BSIs, Gram-positive organisms caused 42.6%, and fungi caused 8.4%. The most common pathogens were Coagulase-negative staphylococci (CoNS) (21.3%), Klebsiella spp. (15.7%), Staphylococcus aureus (10.6%), and Acinetobacter spp. (9.2%). The crude mortality was 21.6% (74 of 342). Forty-five percent of nBSIs occurred in a pediatric or neonatal intensive-care unit (ICU). The most frequent underlying conditions were malignancy, in 95 patients (27.8%). Among the potential factors predisposing patients to BSI, central venous catheters were the most frequent (66.4%). Methicillin resistance was detected in 37 S. aureus isolates (27.1%). Of the Klebsiella spp. isolates, 43.2% were resistant to ceftriaxone. Of the Acinetobacter spp. and Pseudomonas aeruginosa isolates, 42.9% and 21.4%, respectively, were resistant to imipenem.

Conclusions

In our multicenter study, we found a high mortality and a large proportion of gram-negative bacilli with elevated levels of resistance in pediatric patients.  相似文献   

13.
14.

Background

The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy.

Methodology/Principal Findings

The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh) strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp) strain increased the growth rate of wild type Vh without significantly altering Vh''s bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants.

Conclusions/Significance

The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.  相似文献   

15.

Background

Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis, was reported to produce biofilm. As the disease causes high relapse rate when compared to other bacterial infections, it therefore might be due to the reactivation of the biofilm forming bacteria which also provided resistance to antimicrobial agents. However, the mechanism on how biofilm can provide tolerance to antimicrobials is still unclear.

Methodology/Principal Findings

The change in resistance of B. pseudomallei to doxycycline, ceftazidime, imipenem, and trimethoprim/sulfamethoxazole during biofilm formation were measured as minimum biofilm elimination concentration (MBEC) in 50 soil and clinical isolates and also in capsule, flagellin, LPS and biofilm mutants. Almost all planktonic isolates were susceptible to all agents studied. In contrast, when they were grown in the condition that induced biofilm formation, they were markedly resistant to all antimicrobial agents even though the amount of biofilm production was not the same. The capsule and O-side chains of LPS mutants had no effect on biofilm formation whereas the flagellin-defective mutant markedly reduced in biofilm production. No alteration of LPS profiles was observed when susceptible form was changed to resistance. The higher amount of N-acyl homoserine lactones (AHLs) was detected in the high biofilm-producing isolates. Interestingly, the biofilm mutant which produced a very low amount of biofilm and was sensitive to antimicrobial agents significantly resisted those agents when grown in biofilm inducing condition.

Conclusions/Significance

The possible drug resistance mechanism of biofilm mutants and other isolates is not by having biofilm but rather from some factors that up-regulated when biofilm formation genes were stimulated. The understanding of genes related to this situation may lead us to prevent B. pseudomallei biofilms leading to the relapse of melioidosis.  相似文献   

16.

Rationale

The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia.

Objectives

The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia.

Methods

To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage.

Measurements and Primary Results

SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality.

Conclusion

These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use.  相似文献   

17.

Background

Few clinical data are available on the relationship between genospecies and outcome of Acinetobacter bacteremia, and the results are inconsistent. We performed this study to evaluate the relationship between genospecies and the outcome of Acinetobacter bacteremia.

Methods

Clinical data from 180 patients who had Acinetobacter bacteremia from 2003 to 2010 were reviewed retrospectively. The genospecies were identified by rpoB gene sequence analysis. The clinical features and outcomes of 90 patients with A. baumannii bacteremia were compared to those of 90 patients with non-baumannii Acinetobacter bacteremia (60 with A. nosocomialis, 17 with Acinetobacter species “close to 13 TU”, 11 with A. pittii, and two with A. calcoaceticus).

Results

A. baumannii bacteremia was associated with intensive care unit-onset, mechanical ventilation, pneumonia, carbapenem resistance, and higher APACHE II scores, compared to non-baumannii Acinetobacter bacteremia (P<0.05). In univariate analyses, age, pneumonia, multidrug resistance, carbapenem resistance, inappropriate empirical antibiotics, higher APACHE II scores, and A. baumannii genospecies were risk factors for mortality (P<0.05). Multivariate analysis revealed A. baumannii genospecies (OR, 3.60; 95% CI, 1.56–8.33), age, pneumonia, and higher APACHE II scores to be independent risk factors for mortality (P<0.05).

Conclusion

A. baumannii genospecies was an independent risk factor for mortality in patients with Acinetobacter bacteremia. Our results emphasize the importance of correct species identification of Acinetobacter blood isolates.  相似文献   

18.

Background

In recent years, Staphylococcus epidermidis ( Se) has become a major nosocomial pathogen and the most common cause of infections of implanted prostheses and other indwelling devices. This is due in part to avid biofilm formation by Se on device surfaces. However, it still remains unknown that how the process of Se biofilm development is associated with relapsed infection in such patients.

Results

We have identified clinical Se isolates displaying enhanced biofilm dispersal and self-renewal relative to reference strain. These isolates also exhibit enhanced initial cell attachment, extracellular DNA release, cell autolysis and thicker microcolonies during biofilm development relative to reference strain. Our genetic analyses suggest that these clinical isolates exhibit significant downregulation of RNAIII, the effector molecule of the agr quorum sensing system, and upregulation of the autolysin gene atlE. Isogenic deletion of the agr system in Se 1457 confirmed that agr negatively regulating atlE resulted in enhanced initial cell attachment, extracellular DNA release, cell autolysis and biofilm formation abilities. In contrast, double deletion of agr and atlE significantly abolished these features.

Conclusions

Collectively, these data reveal the role of agr system in long-term biofilm development and pathogenesis during Se caused indwelling devices-related relapsed infection.  相似文献   

19.
20.
【背景】细菌密度感应(Quorum sensing,QS)是指细菌利用分泌的信号分子进行相互交流的现象,而密度感应淬灭(Quorumquenching,QQ)是指通过干扰信号分子的产生、释放、积累或应答从而阻抑密度感应通路。【目的】探究青岛近海沉积物生物被膜中密度感应和密度感应淬灭细菌的多样性。【方法】采用海水培养基2216E从青岛近海沉积物生物被膜中分离获取可培养细菌,采用平板交互划线和高通量筛选的方法分别筛选具有密度感应和密度感应淬灭的菌株。【结果】共分离获得83株共54种具有密度感应和密度感应淬灭的细菌,分属于四大细菌门类:变形菌门、拟杆菌门、厚壁菌门和放线菌门。其中,38株(45.8%)可以产生酰基高丝氨酸内酯(Acyl-homoserine lactone,AHL)类信号分子,它们分属于变形菌门(37株,15种)和拟杆菌门(1株,1种),优势属为弧菌属和鲁杰氏菌属;能够降解AHL类信号分子的有57株(68.7%),在变形菌门(41株,23种)、拟杆菌门(14株,10种)、厚壁菌门(5株,5种)以及放线菌门(1株,1种)中均有分布。【结论】在青岛近海沉积物生物被膜可培养细菌中,具有密度感应和密度感应淬灭现象的菌株具有很高的丰度和多样性,为后续生态学意义的研究与海洋微生物的开发提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号