首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred.  相似文献   

2.
MOTIVATION: Protein-protein interactions have proved to be a valuable starting point for understanding the inner workings of the cell. Computational methodologies have been built which both predict interactions and use interaction datasets in order to predict other protein features. Such methods require gold standard positive (GSP) and negative (GSN) interaction sets. Here we examine and demonstrate the usefulness of homologous interactions in predicting good quality positive and negative interaction datasets. RESULTS: We generate GSP interaction sets as subsets from experimental data using only interaction and sequence information. We can therefore produce sets for several species (many of which at present have no identified GSPs). Comprehensive error rate testing demonstrates the power of the method. We also show how the use of our datasets significantly improves the predictive power of algorithms for interaction prediction and function prediction. Furthermore, we generate GSN interaction sets for yeast and examine the use of homology along with other protein properties such as localization, expression and function. Using a novel method to assess the accuracy of a negative interaction set, we find that the best single selector for negative interactions is a lack of co-function. However, an integrated method using all the characteristics shows significant improvement over any current method for identifying GSN interactions. The nature of homologous interactions is also examined and we demonstrate that interologs are found more commonly within species than across species. CONCLUSION: GSP sets built using our homologous verification method are demonstrably better than standard sets in terms of predictive ability. We can build such GSP sets for several species. When generating GSNs we show a combination of protein features and lack of homologous interactions gives the highest quality interaction sets. AVAILABILITY: GSP and GSN datasets for all the studied species can be downloaded from http://www.stats.ox.ac.uk/~deane/HPIV.  相似文献   

3.
Gene duplication provides much of the raw material from which functional diversity evolves. Two evolutionary mechanisms have been proposed that generate functional diversity: neofunctionalization, the de novo acquisition of function by one duplicate, and subfunctionalization, the partitioning of ancestral functions between gene duplicates. With protein interactions as a surrogate for protein functions, evidence of prodigious neofunctionalization and subfunctionalization has been identified in analyses of empirical protein interactions and evolutionary models of protein interactions. However, we have identified three phenomena that have contributed to neofunctionalization being erroneously identified as a significant factor in protein interaction network evolution. First, self-interacting proteins are underreported in interaction data due to biological artifacts and design limitations in the two most common high-throughput protein interaction assays. Second, evolutionary inferences have been drawn from paralog analysis without consideration for concurrent and subsequent duplication events. Third, the theoretical model of prodigious neofunctionalization is unable to reproduce empirical network clustering and relies on untenable parameter requirements. In light of these findings, we believe that protein interaction evolution is more persuasively characterized by subfunctionalization and self-interactions.  相似文献   

4.
The clamp-loader-helicase interaction is an important feature of the replisome. Although significant biochemical and structural work has been carried out on the clamp-loader-clamp-DNA polymerase alpha interactions in Escherichia coli, the clamp-loader-helicase interaction is poorly understood by comparison. The tau subunit of the clamp-loader mediates the interaction with DnaB. We have recently characterised this interaction in the Bacillus system and established a tau(5)-DnaB(6) stoichiometry. Here, we have obtained atomic force microscopy images of the tau-DnaB complex that reveal the first structural insight into its architecture. We show that despite the reported absence of the shorter gamma version in Bacillus, tau has a domain organisation similar to its E.coli counterpart and possesses an equivalent C-terminal domain that interacts with DnaB. The interaction interface of DnaB is also localised in its C-terminal domain. The combined data contribute towards our understanding of the bacterial replisome.  相似文献   

5.
MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference.  相似文献   

6.
Pan W  Basu S  Shen X 《Human heredity》2011,72(2):98-109
There has been an increasing interest in detecting gene-gene and gene-environment interactions in genetic association studies. A major statistical challenge is how to deal with a large number of parameters measuring possible interaction effects, which leads to reduced power of any statistical test due to a large number of degrees of freedom or high cost of adjustment for multiple testing. Hence, a popular idea is to first apply some dimension reduction techniques before testing, while another is to apply only statistical tests that are developed for and robust to high-dimensional data. To combine both ideas, we propose applying an adaptive sum of squared score (SSU) test and several other adaptive tests. These adaptive tests are extensions of the adaptive Neyman test [Fan, 1996], which was originally proposed for high-dimensional data, providing a simple and effective way for dimension reduction. On the other hand, the original SSU test coincides with a version of a test specifically developed for high-dimensional data. We apply these adaptive tests and their original nonadaptive versions to simulated data to detect interactions between two groups of SNPs (e.g. multiple SNPs in two candidate regions). We found that for sparse models (i.e. with only few non-zero interaction parameters), the adaptive SSU test and its close variant, an adaptive version of the weighted sum of squared score (SSUw) test, improved the power over their non-adaptive versions, and performed consistently well across various scenarios. The proposed adaptive tests are built in the general framework of regression analysis, and can thus be applied to various types of traits in the presence of covariates.  相似文献   

7.
SUMMARY: Genome-wide association studies are now technically feasible and likely to become a fundamental tool in unraveling the ultimate genetic basis of complex traits. However, new statistical and computational methods need to be developed to extract the maximum information in a realistic computing time. Here we propose a new method for multiple association analysis via simulated annealing that allows for epistasis and any number of markers. It consists of finding the model with lowest Bayesian information criterion using simulated annealing. The data are described by means of a mixed model and new alternative models are proposed using a set of rules, e.g. new sites can be added (or deleted), or new epistatic interactions can be included between existing genetic factors. The method is illustrated with simulated and real data. AVAILABILITY: An executable version of the program (MASSA) running under the Linux OS is freely available, together with documentation, at http://www.icrea.es/pag.asp?id=Miguel.Perez.  相似文献   

8.
Allometric trophic network (ATN) models offer high flexibility and scalability while minimizing the number of parameters and have been successfully applied to investigate complex food web dynamics and their influence on food web diversity and stability. However, the realism of ATN model energetics has never been assessed in detail, despite their critical influence on dynamic biomass and production patterns. Here, we compare the energetics of the currently established original ATN model, considering only biomass-dependent basal respiration, to an extended ATN model version, considering both basal and assimilation-dependent activity respiration. The latter is crucial in particular for unicellular and invertebrate organisms which dominate the metabolism of pelagic and soil food webs. Based on metabolic scaling laws, we show that the extended ATN version reflects the energy transfer through a chain of four trophic levels of unicellular and invertebrate organisms more realistically than the original ATN version. Depending on the strength of top-down control, the original ATN model yields trophic transfer efficiencies up to 71% at either the third or the fourth trophic level, which considerably exceeds any realistic values. In contrast, the extended ATN version yields realistic trophic transfer efficiencies ≤?30% at all trophic levels, in accordance with both physiological considerations and empirical evidence from pelagic systems. Our results imply that accounting for activity respiration is essential for consistently implementing the metabolic theory of ecology in ATN models and for improving their quantitative predictions, which makes them more powerful tools for investigating the dynamics of complex natural communities.  相似文献   

9.
Recent papers have described the structure of plant–animal mutualistic networks. However, no study has yet explored the dynamical implications of network structure for the persistence of such mutualistic communities. Here, we develop a patch-model of a whole plant–animal community and explore its persistence. To assess the role of network structure, we build three versions of the model. In the first version, we use the exact network of interactions of two real mutualistic communities. In the other versions, we randomize the observed network of interactions using two different null models. We show that the community response to habitat loss is affected by network structure. Real communities start to decay sooner than random communities, but persist for higher destruction levels. There is a destruction threshold at which the community collapses. Our model is the first attempt to describe the dynamics of whole mutualistic metacommunities interacting in realistic ways.  相似文献   

10.
There has been a continuing interest in approaches that analyze pairwise locus-by-locus (epistasis) interactions using multilocus association models in genome-wide data sets. In this paper, we suggest an approach that uses sure independence screening to first lower the dimension of the problem by considering the marginal importance of each interaction term within the huge loop. Subsequent multilocus association steps are executed using an extended Bayesian least absolute shrinkage and selection operator (LASSO) model and fast generalized expectation-maximization estimation algorithms. The potential of this approach is illustrated and compared with PLINK software using data examples where phenotypes have been simulated conditionally on marker data from the Quantitative Trait Loci Mapping and Marker Assisted Selection (QTLMAS) Workshop 2008 and real pig data sets.  相似文献   

11.
TH Chueh  HH Lu 《PloS one》2012,7(8):e42095
One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other substance in an organism. However, it is crucial to make inference of genetic regulatory networks from gene expression profiles and protein interaction data for systems biology. This study will develop a new approach to reconstruct time delay Boolean networks as a tool for exploring biological pathways. In the inference strategy, we will compare all pairs of input genes in those basic relationships by their corresponding [Formula: see text]-scores for every output gene. Then, we will combine those consistent relationships to reveal the most probable relationship and reconstruct the genetic network. Specifically, we will prove that [Formula: see text] state transition pairs are sufficient and necessary to reconstruct the time delay Boolean network of [Formula: see text] nodes with high accuracy if the number of input genes to each gene is bounded. We also have implemented this method on simulated and empirical yeast gene expression data sets. The test results show that this proposed method is extensible for realistic networks.  相似文献   

12.
陈斯养  靳宝 《生态学报》2015,35(7):2339-2348
讨论了具时滞与分段常数变量的捕食-食饵生态模型的稳定性及Neimark-Sacker分支;通过计算得到连续模型对应的差分模型,基于特征值理论和Schur-Cohn判据得到正平衡态局部渐进稳定的充分条件;以食饵的内禀增长率为分支参数,运用分支理论和中心流形定理分析了Neimark-Sacker分支的存在性与稳定性条件;通过举例和数值模拟验证了理论的正确性。  相似文献   

13.
Many different types of generative models for protein sequences have been proposed in literature. Their uses include the prediction of mutational effects, protein design and the prediction of structural properties. Neural network (NN) architectures have shown great performances, commonly attributed to the capacity to extract non-trivial higher-order interactions from the data. In this work, we analyze two different NN models and assess how close they are to simple pairwise distributions, which have been used in the past for similar problems. We present an approach for extracting pairwise models from more complex ones using an energy-based modeling framework. We show that for the tested models the extracted pairwise models can replicate the energies of the original models and are also close in performance in tasks like mutational effect prediction. In addition, we show that even simpler, factorized models often come close in performance to the original models.  相似文献   

14.
Biomechanical research of left ventricular function involves the assessment and understanding of both ventricular wall mechanics and deformation and intraventricular flow patterns, as well as how they interact. Experimental research using hydraulic bench models should therefore aim for an as realistic as possible simulation of both. In previous experimental investigations, wall deformation was studied by means of thin-walled passive experimental models, consisting of a silicone membrane in a closed box, which is squeezed passively by an externally connected piston pump. Although the pump function of these models has already been well established, the membrane deformation remains unpredictable and the effect of muscle contraction – and hence natural wall deformation – cannot be simulated. In this study, we propose a new design of an experimental hydraulic left ventricular model in which left ventricular wall deformation can be controlled. We built this model by a combination of rapid prototyping techniques and tested it to demonstrate its wall deformation and pump function. Our experiments show that circumferential and longitudinal contraction can be attained and that this model can generate fairly normal values of pressure and flow.  相似文献   

15.
16.
Pan W 《Human genetics》2008,124(3):225-234
For genome-wide association studies, it has been increasingly recognized that the popular locus-by-locus search for DNA variants associated with disease susceptibility may not be effective, especially when there are interactions between or among multiple loci, for which a multi-loci search strategy may be more productive. However, even if computationally feasible, a genome-wide search over all possible multiple loci requires exploring a huge model space and making costly adjustment for multiple testing, leading to reduced statistical power. On the other hand, there are accumulating data suggesting that protein products of many disease-causing genes tend to interact with each other, or cluster in the same biological pathway. To incorporate this prior knowledge and existing data on gene networks, we propose a gene network-based method to improve statistical power over that of the exhaustive search by giving higher weights to models involving genes nearby in a network. We use simulated data under realistic scenarios, including a large-scale human protein–protein interaction network and 23 known ataxia-causing genes, to demonstrate potential gain by our proposed method when disease-genes are clustered in a network.  相似文献   

17.
Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.  相似文献   

18.
19.
Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.  相似文献   

20.
SUMMARY Genotype–phenotype interactions during the evolution of form in multicellular organisms is a complex problem but one that can be aided by computational approaches. We present here a framework within which developmental patterns and their underlying genetic networks can be simulated. Gene networks were chosen to reflect realistic regulatory circuits, including positive and negative feedback control, and the exchange of a subset of gene products between cells, or within a syncytium. Some of these networks generate stable spatial patterns of a subset of their molecular constituents, and can be assigned to categories (e.g., "emergent" or "hierarchic") based on the topology of molecular circuitry. These categories roughly correspond to what has been discussed in the literature as "self-organizing" and "programmed" processes of development. The capability of such networks to form patterns of repeating stripes was studied in network ensembles in which parameters of gene-gene interaction were caused to vary in a manner analogous to genetic mutation. The evolution under mutational change of individual representative networks of each category was also simulated. We have found that patterns with few stripes (≤3) are most likely to originate in the form of a hierarchic network, whereas those with greater numbers of stripes (≥4) originate most readily as emergent networks. However, regardless of how many stripes it contains, once a pattern is established, there appears to be an evolutionary tendency for emergent mechanisms to be replaced by hierarchic mechanisms. These results have potential significance for the understanding of genotype-phenotype relationships in the evolution of metazoan form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号