首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsivilis D  Otten LJ  Rugg MD 《Neuron》2001,31(3):497-505
Event-related potentials (ERPs) were recorded during a recognition memory test for previously studied visual objects. Some studied objects were paired with the same context (landscape scenes) as at study, some were superimposed on a different studied context, and some were paired with new contexts. Unstudied objects were paired with either a studied or a new context. Three ERP memory effects were observed: an early effect elicited by all stimuli containing at least one studied component; a second effect elicited only by stimuli in which both object and context had been studied; and a third effect elicited by stimuli containing a studied object. Thus, test stimuli engaged three distinct kinds of memory-related neural activity which differed in their specificity for task-relevant features.  相似文献   

2.
Marois R  Leung HC  Gore JC 《Neuron》2000,25(3):717-728
The primate visual system is considered to be segregated into ventral and dorsal streams specialized for processing object identity and location, respectively. We reexamined the dorsal/ventral model using a stimulus-driven approach to object identity and location processing. While looking at repeated presentations of a standard object at a standard location, subjects monitored for any infrequent "oddball" changes in object identity, location, or identity and location (conjunction). While the identity and location oddballs preferentially activated ventral and dorsal brain regions respectively, each oddball type activated both pathways. Furthermore, all oddball types recruited the lateral temporal cortex and the temporo-parietal junction. These findings suggest that a strict dorsal/ventral dual-stream model does not fully account for the perception of novel objects in space.  相似文献   

3.
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.  相似文献   

4.
When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects’ identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.  相似文献   

5.
Mazza V  Caramazza A 《PloS one》2011,6(2):e17453
The ability to process concurrently multiple visual objects is fundamental for a coherent perception of the world. A core component of this ability is the simultaneous individuation of multiple objects. Many studies have addressed the mechanism of object individuation but it remains unknown whether the visual system mandatorily individuates all relevant elements in the visual field, or whether object indexing depends on task demands. We used a neural measure of visual selection, the N2pc component, to evaluate the flexibility of multiple object individuation. In three ERP experiments, participants saw a variable number of target elements among homogenous distracters and performed either an enumeration task (Experiment 1) or a detection task, reporting whether at least one (Experiment 2) or a specified number of target elements (Experiment 3) was present. While in the enumeration task the N2pc response increased as a function of the number of targets, no such modulation was found in Experiment 2, indicating that individuation of multiple targets is not mandatory. However, a modulation of the N2pc similar to the enumeration task was visible in Experiment 3, further highlighting that object individuation is a flexible mechanism that binds indexes to object properties and locations as needed for further object processing.  相似文献   

6.
The study examined whether women excel at tasks which require processing the identity of objects information as has been suggested in the context of the well-known object location memory task. In a computer-simulated task, university students were shown simulated indoor and outdoor house scenes. After studying a scene the students were presented with two images. One was the original image and the other a modified version in which one object was either rotated by ninety degrees or substituted with a similar looking object. The participants were asked to indicate the original image. The main finding was that no sex effect was obtained in this task. The female and male students did not differ on a verbal ability test, and their 2D:4D ratios were found to be comparable.  相似文献   

7.
In natural environments that contain multiple sound sources, acoustic energy arising from the different sources sums to produce a single complex waveform at each of the listener's ears. The auditory system must segregate this waveform into distinct streams to permit identification of the objects from which the signals emanate [1]. Although the processes involved in stream segregation are now reasonably well understood [1, 2 and 3], little is known about the nature of our perception of complex auditory scenes. Here, we examined complex scene perception by having listeners detect a discrete change to an auditory scene comprising multiple concurrent naturalistic sounds. We found that listeners were remarkably poor at detecting the disappearance of an individual auditory object when listening to scenes containing more than four objects, but they performed near perfectly when their attention was directed to the identity of a potential change. In the absence of directed attention, this "change deafness" [4] was greater for objects arising from a common location in space than for objects separated in azimuth. Change deafness was also observed for changes in object location, suggesting that it may reflect a general effect of the dependence of human auditory perception on attention.  相似文献   

8.
Adding noise to a visual image makes object recognition more effortful and has a widespread effect on human electrophysiological responses. However, visual cortical processes directly involved in handling the stimulus noise have yet to be identified and dissociated from the modulation of the neural responses due to the deteriorated structural information and increased stimulus uncertainty in the case of noisy images. Here we show that the impairment of face gender categorization performance in the case of noisy images in amblyopic patients correlates with amblyopic deficits measured in the noise-induced modulation of the P1/P2 components of single-trial event-related potentials (ERP). On the other hand, the N170 ERP component is similarly affected by the presence of noise in the two eyes and its modulation does not predict the behavioral deficit. These results have revealed that the efficient processing of noisy images depends on the engagement of additional processing resources both at the early, feature-specific as well as later, object-level stages of visual cortical processing reflected in the P1 and P2 ERP components, respectively. Our findings also suggest that noise-induced modulation of the N170 component might reflect diminished face-selective neuronal responses to face images with deteriorated structural information.  相似文献   

9.
He X  Yang Z  Tsien JZ 《PloS one》2011,6(5):e20002
Humans can categorize objects in complex natural scenes within 100-150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ~6,000 in a leading model) feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization.To address this issue, we developed a hierarchical probabilistic model for rapid object categorization in natural scenes. In this model, a natural object category is represented by a coarse hierarchical probability distribution (PD), which includes PDs of object geometry and spatial configuration of object parts. Object parts are encoded by PDs of a set of natural object structures, each of which is a concatenation of local object features. Rapid categorization is performed as statistical inference. Since the model uses a very small number (~100) of structures for even complex object categories such as animals and cars, it requires little training and is robust in the presence of large variations within object categories and in their occurrences in natural scenes. Remarkably, we found that the model categorized animals in natural scenes and cars in street scenes with a near human-level performance. We also found that the model located animals and cars in natural scenes, thus overcoming a flaw in many other models which is to categorize objects in natural context by categorizing contextual features. These results suggest that coarse PDs of object categories based on natural object structures and statistical operations on these PDs may underlie the human ability to rapidly categorize scenes.  相似文献   

10.
BACKGROUND: Recognizing an object is improved by recent experience with that object even if one cannot recall seeing the object. This perceptual facilitation as a result of previous experience is called priming. In neuroimaging studies, priming is often associated with a decrease in activation in brain regions involved in object recognition. It is thought that this occurs because priming causes a sharpening of object representations which leads to more efficient processing and, consequently, a reduction in neural activity. Recent evidence has suggested, however, that the apparent effect of priming on brain activation may vary as a function of whether the neural activity is measured before or after recognition has taken place. RESULTS: Using a gradual 'unmasking' technique, we presented primed and non-primed objects to subjects, and measured activation time courses using high-field functional magnetic resonance imaging (fMRI). As the objects were slowly revealed, but before recognition had occurred, activation increased from baseline level to a peak that corresponded in time to the subjects' behavioural recognition responses. The activation peak for primed objects occurred sooner than the peak for non-primed objects, and subjects responded sooner when presented with a primed object than with a non-primed object. During this pre-recognition phase, primed objects produced more activation than non-primed objects. After recognition, activation declined rapidly for both primed and non-primed objects, but now activation was lower for the primed objects. CONCLUSIONS: Priming did not produce a general decrease in activation in the brain regions involved in object recognition but, instead, produced a shift in the time of peak activation that corresponded to the shift in time seen in the subjects' behavioural recognition performance.  相似文献   

11.
Distinct cerebral pathways for object identity and number in human infants   总被引:1,自引:1,他引:0  
All humans, regardless of their culture and education, possess an intuitive understanding of number. Behavioural evidence suggests that numerical competence may be present early on in infancy. Here, we present brain-imaging evidence for distinct cerebral coding of number and object identity in 3-mo-old infants. We compared the visual event-related potentials evoked by unforeseen changes either in the identity of objects forming a set, or in the cardinal of this set. In adults and 4-y-old children, number sense relies on a dorsal system of bilateral intraparietal areas, different from the ventral occipitotemporal system sensitive to object identity. Scalp voltage topographies and cortical source modelling revealed a similar distinction in 3-mo-olds, with changes in object identity activating ventral temporal areas, whereas changes in number involved an additional right parietoprefrontal network. These results underscore the developmental continuity of number sense by pointing to early functional biases in brain organization that may channel subsequent learning to restricted brain areas.  相似文献   

12.

Background

When viewing complex scenes, East Asians attend more to contexts whereas Westerners attend more to objects, reflecting cultural differences in holistic and analytic visual processing styles respectively. This eye-tracking study investigated more specific mechanisms and the robustness of these cultural biases in visual processing when salient changes in the objects and backgrounds occur in complex pictures.

Methodology/Principal Findings

Chinese Singaporean (East Asian) and Caucasian US (Western) participants passively viewed pictures containing selectively changing objects and background scenes that strongly captured participants'' attention in a data-driven manner. We found that although participants from both groups responded to object changes in the pictures, there was still evidence for cultural divergence in eye-movements. The number of object fixations in the US participants was more affected by object change than in the Singapore participants. Additionally, despite the picture manipulations, US participants consistently maintained longer durations for both object and background fixations, with eye-movements that generally remained within the focal objects. In contrast, Singapore participants had shorter fixation durations with eye-movements that alternated more between objects and backgrounds.

Conclusions/Significance

The results demonstrate a robust cultural bias in visual processing even when external stimuli draw attention in an opposite manner to the cultural bias. These findings also extend previous studies by revealing more specific, but consistent, effects of culture on the different aspects of visual attention as measured by fixation duration, number of fixations, and saccades between objects and backgrounds.  相似文献   

13.
图形形状和空间位置知觉的ERP研究   总被引:2,自引:0,他引:2  
研究图形表状和空间位置知觉任务与单纯图形形状知觉任务所诱发的ERP反应,探讨同时注意物体的两种不同特征是与仅注意其中一种特征时的ERP特性与差别。实验结果为:(1)行为数据显示,两种任务的正确率没有显著差别,但形状和空间位置知觉任务的反应时显著低于单纯形状知觉任务;(2)ERP数据显示,两种任务表现出非常相近的ERP波形特征;在大脑后部区域微弱的P1成分,非常显著的N1成分,显著的P2,N2,P3成分;在大脑前部额区显著的P2成分,并且,与单纯形状知觉任务相比,图形形状和空间位置知觉任务表现枕颞区N2波幅的显著减弱,P3潜伏期的显著缩短,额区的P2波幅的显微减弱;(3)脑电表图与分辨率断层成象(LORETA)显示,两种任务的特征波N1成分均来源于双侧的枕颞皮层,表明两种任务均涉及到与物体形状识别相关的视皮层腹侧通路,而差别波dN2成分来源于在侧枕颞区,暗示特征加工的差异主要发生在左侧枕颞区。  相似文献   

14.
Wühr P 《Spatial Vision》2006,19(5):459-477
Three experiments investigated the effects of advance information about orientation on the processing of relevant and irrelevant objects, as indicated by Stroop effects from color words located in either object. Four results were obtained. First, participants showed the expected modulation of the Stroop effect: words in the relevant object produced much larger Stroop effects than words in the irrelevant object or words in the background. Second, blocking of object orientation had no effects. Third, informative orientation cues facilitated processing of the relevant object, but cueing did not affect processing of the irrelevant object. Fourth, effects of informative orientation cues were restricted to the first part of each experiment. Results suggest that observers can use advance information about object orientation for improving attentional selection of a visual object. In addition, the results revealed some constraints for the effective use of orientation cues, and discard possible explanations for the observed modulation of Stroop effects.  相似文献   

15.
Viewpoint-specific scene representations in human parahippocampal cortex   总被引:15,自引:0,他引:15  
Epstein R  Graham KS  Downing PE 《Neuron》2003,37(5):865-876
The "parahippocampal place area" (PPA) responds more strongly in functional magnetic resonance imaging (fMRI) to scenes than to faces, objects, or other visual stimuli. We used an event-related fMRI adaptation paradigm to test whether the PPA represents scenes in a viewpoint-specific or viewpoint-invariant manner. The PPA responded just as strongly to viewpoint changes that preserved intrinsic scene geometry as it did to complete scene changes, but less strongly to object changes within the scene. In contrast, lateral occipital cortex responded more strongly to object changes than to spatial changes. These results demonstrate that scene processing in the PPA is viewpoint specific and suggest that the PPA represents the relationship between the observer and the surfaces that define local space.  相似文献   

16.
Can nonhuman animals attend to visual stimuli as whole, coherent objects? We investigated this question by adapting for use with pigeons a task in which human participants must report whether two visual attributes belong to the same object (one-object trial) or to different objects (two-object trial). We trained pigeons to discriminate a pair of differently colored shapes that had two targets either on a single object or on two different objects. Each target equally often appeared on the one-object and two-object stimuli; therefore, a specific target location could not serve as a discriminative cue. The pigeons learned to report whether the two target dots were located on a single object or on two different objects; follow-up tests demonstrated that this ability was not entirely based on memorization of the dot patterns and locations. Additional tests disclosed predominate stimulus control by the color, but not by the shape of the two objects. These findings suggest that human psychophysical methods are readily applicable to the study of object discrimination by nonhuman animals.  相似文献   

17.
The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz) elicited by familiar (meaningful) objects is well established in electroencephalogram (EEG) research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC) using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar object processing. In contrast, unfamiliar objects entailed a sparse number of only unidirectional connections converging to parietal areas. Considering the directionality of brain interactions, the current results might indicate that successful activation of object representations is realized through reciprocal (feed-forward and feed-backward) information-transfer of oscillatory connections between distant, functionally specific brain areas.  相似文献   

18.
A common method for testing preference for objects is to determine which of a pair of objects is approached first in a paired-choice paradigm. In comparison, many studies of preference for environmental enrichment (EE) devices have used paradigms in which total time spent with each of a pair of objects is used to determine preference. While each of these paradigms gives a specific measure of the preference for one object in comparison to another, neither method allows comparisons between multiple objects simultaneously. Since it is possible that several EE objects would be placed in a cage together to improve animal welfare, it is important to determine measures for rats’ preferences in conditions that mimic this potential home cage environment. While it would be predicted that each type of measure would produce similar rankings of objects, this has never been tested empirically. In this study, we compared two paradigms: EE objects were either presented in pairs (paired-choice comparison) or four objects were presented simultaneously (simultaneous presentation comparison). We used frequency of first interaction and time spent with each object to rank the objects in the paired-choice experiment, and time spent with each object to rank the objects in the simultaneous presentation experiment. We also considered the behaviours elicited by the objects to determine if these might be contributing to object preference. We demonstrated that object ranking based on time spent with objects from the paired-choice experiment predicted object ranking in the simultaneous presentation experiment. Additionally, we confirmed that behaviours elicited were an important determinant of time spent with an object. This provides convergent evidence that both paired choice and simultaneous comparisons provide valid measures of preference for EE objects in rats.  相似文献   

19.
Event-related brain potentials (ERPs) were recorded in a visuo-spatial attention task where the position of an imperative stimulus was indicated either validly or invalidly by a central arrow (trial-by-trial cueing). Subjects had to perform choice RT tasks with the response being dependent either on the identity of the target stimulus or on its position. When target identity was relevant for response selection, validly cued stimuli elicited amplitude enhancements of the early, sensory-evoked P1 and N1 components at lateral posterior sites. The N1 validity effect was limited to scalp sites ipsilateral to the visual field of stimulus presentation. Although these effects were found only when the sensory discrimination task was considerably difficult, they are in line with models assuming that modulations of sensory-perceptual processing (“sensory gating”) are induced by spatial cueing. However, when target location was response-relevant, N1 amplitude enhancements were consistently elicited by invalidly cued letters.CNV and LRP measures indicated that the arrow elicited response-related processing in the cue-target interval. Such processes occurred even when the cue contained no information about an upcoming response. Two consecutive lateralization phases were distinguishable in the LRP, with experimentally induced response assignments becoming effective only during the second phase.  相似文献   

20.
Perceptual interactions in a model of wine woody-fruity binary mixtures were previously reported in a psychophysical study performed through orthonasal stimulation only. However, recent studies suggested that the perception of food-like and nonfood-like odors may depend on the route of stimulation. The aim of the present study was two-fold: first to examine the neural correlates of perceptual interactions using electroencephalogram (EEG)-derived event-related potentials (ERPs) and second to test the influence of the stimulation route on quality perception. Therefore, we designed an experiment with 30 subjects to study perceptual interactions in woody-fruity mixtures and compared ortho- vs. retronasal stimulation sites on perceived odor quality and ERPs. The results revealed synergy or masking of the fruity component, depending on the woody component level. Synergy was supported by larger N1 amplitude of the ERP. Furthermore, mixtures including a medium level of the woody odor elicited a strong increase of P2 amplitude only retronasally. This study evidenced for the first time electrophysiological correlates of both perceptual synergy and masking on the early component of the ERPs and confirmed that retro- vs. orthonasal stimulation route induces different neural processes that are reflected in the late component of the ERP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号