首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.  相似文献   

3.
Staphylococcus aureus (S. aureus) biofilms are clinically serious and play a critical role in the persistence of chronic infections due to their ability to resist antibiotics. The inhibition of biofilm formation is viewed as a new strategy for the prevention of S. aureus infections. Here, we demonstrated that minimum inhibitory concentrations (MICs) of aloe-emodin exhibited no bactericidal activity against S. aureus but affected S. aureus biofilm development in a dose-dependent manner. Further studies indicated that aloe-emodin specifically inhibits the initial adhesion and proliferation stages of S. aureus biofilm development. Scanning electron microscopy (SEM) indicated that the S. aureus ATCC29213 biofilm extracellular matrix is mainly composed of protein. Laser scanning confocal microscope assays revealed that aloe-emodin treatment primarily inhibited extracellular protein production. Moreover, the Congo red assay showed that aloe-emodin also reduced the accumulation of polysaccharide intercellular adhesin (PIA) on the cell surface. These findings will provide new insights into the mode of action of aloe-emodin in the treatment of infections by S. aureus biofilms.  相似文献   

4.
An estimated 65% of infective diseases are associated with the presence of bacterial biofilms. Biofilm-issued planktonic cells promote blood-borne, secondary sites of infection by the inoculation of the infected sites with bacteria from the intravascular space. To investigate the potential role of early detachment events in initiating secondary infections, we studied the phenotypic attributes of Staphylococcus aureus planktonic cells eroding from biofilms with respect to expression of the collagen adhesin, CNA. The collagen-binding abilities of S. aureus have been correlated to the development of osteomyelitis and septic arthritis. In this study, we focused on the impact of CNA expression on S. aureus adhesion to immobilized collagen in vitro under physiologically relevant shear forces. In contrast to the growth phase-dependent adhesion properties characteristic of S. aureus cells grown in suspension, eroding planktonic cells expressed invariant and lower effective adhesion rates regardless of the age of the biofilm from which they originated. These results correlated directly with the surface expression level of CNA. However, subsequent analysis revealed no qualitative differences between biofilms initiated with suspension cells and secondary biofilms initiated with biofilm-shed planktonic cells. Taken together, our findings suggest that, despite their low levels of CNA expression, S. aureus planktonic cells shed from biofilms retain the capacity for metastatic spread and the initiation of secondary infection. These findings demonstrate the need for a better understanding of the phenotypic properties of eroding planktonic cells, which could lead to new therapeutic strategies to target secondary infections.  相似文献   

5.
The ability of Staphylococcus aureus to adapt to various conditions of stress is the result of a complex regulatory response. Previously, it has been demonstrated that Clp homologues are important for a variety of stress conditions, and our laboratory has shown that a clpC homologue was highly expressed in the S. aureus strain DSM20231 during biofilm formation relative to expression in planktonic cells. Persistence and long-term survival are a hallmark of biofilm-associated staphylococcal infections, as cure frequently fails even in the presence of bactericidal antimicrobials. To determine the role of clpC in this context, we performed metabolic, gene expression, and long-term growth and survival analyses of DSM20231 as well as an isogenic clpC allelic-replacement mutant, a sigB mutant, and a clpC sigB double mutant. As expected, the clpC mutant showed increased sensitivity to oxidative and heat stresses. Unanticipated, however, was the reduced expression of the tricarboxylic acid (TCA) cycle gene citB (encoding aconitase), resulting in the loss of aconitase activity and preventing the catabolization of acetate during the stationary phase. clpC inactivation abolished post-stationary-phase recovery but also resulted in significantly enhanced stationary-phase survival compared to that of the wild-type strain. These data demonstrate the critical role of the ClpC ATPase in regulating the TCA cycle and implicate ClpC as being important for recovery from the stationary phase and also for entering the death phase. Understanding the stationary- and post-stationary-phase recovery in S. aureus may have important clinical implications, as little is known about the mechanisms of long-term persistence of chronic S. aureus infections associated with formation of biofilms.  相似文献   

6.
金黄色葡萄球菌(Staphylococcus aureus,S.aureus)是困扰全球公共卫生及人类健康的重要病原菌,其引起的各种临床感染与该菌表达的多种毒力因子密切相关,而这些毒力因子表达受到调节性因子的精确调控,在细菌致病机制中发挥着核心作用。非编码小RNA(Small non-coding RNA,s RNA)是基因表达的一类重要调节因子,可使细菌对环境因素做出反应,调节其应激适应性及毒力因子表达。但到目前为止,仅少数金黄色葡萄球菌s RNA的生物学功能得到阐述。本文将针对这些调节性s RNA的研究进展作一综述。  相似文献   

7.
8.
Biofilm infections may not simply be the result of colonization by one bacterium, but rather the consequence of pathogenic contributions from several bacteria. Interspecies interactions of different organisms in mixed-species biofilms remain largely unexplained, but knowledge of these is very important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co-culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through their ability to bind to eDNA. Furthermore, P. aeruginosa is able to protect S. aureus against Dictyostelium discoideum phagocytosis in co-culture biofilms.  相似文献   

9.
Staphylococcus aureus is responsible for a broad variety of chronic infections. Most S. aureus clinical isolates show the capacity to adhere to abiotic surfaces and to develop biofilms. Because S. aureus growing in a biofilm is highly refractory to treatment, inhibition of biofilm formation represents a major therapeutic objective. We evaluated the effects of oleic acid on primary adhesion and biofilm production in eight genotypically different S. aureus strains as well as in the biofilm-negative Staphylococcus carnosus strain TM300. Oleic acid inhibited primary adhesion but increased biofilm production in every S. aureus strain tested. Staphylococcus aureus strain UAMS-1 was then selected as a model organism for studying the mechanisms triggered by oleic acid on the formation of a biofilm in vitro. Oleic acid inhibited the primary adhesion of UAMS-1 dose dependently with an IC(50) around 0.016%. The adherent bacterial population decreased proportionally with increasing concentrations of oleic acid whereas an opposite effect was observed on the planktonic population. Overall, the total bacterial counts remained stable. Macroscopic detachments and clumps were visible from the adherent bacterial population. In the presence of oleic acid, the expression of sigB, a gene potentially involved in bacterial survival through an effect on fatty acid composition, was not induced. Our results suggest a natural protective effect of oleic acid against primary adhesion.  相似文献   

10.
The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation.  相似文献   

11.
Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. The capacity of S. epidermidis to form biofilms, allowing it to evade host immune defence mechanisms and antibiotic therapy, is considered to be crucial in colonizing the surfaces of medical implants and dissemination of infection. It has previously been demonstrated that the biofilm of a model strain S. epidermidis RP62A comprises two carbohydrate-containing moieties, a polysaccharide having a structure of a linear poly-N-acetyl-(1-->6)-beta-D-glucosamine and teichoic acid. In the present paper we show that, unlike this model strain, certain clinical isolates of coagulase-negative staphylococci produce biofilms that do not contain detectable amounts of poly-N-acetyl-(1-->6)-beta-D-glucosamine. In contrast to that of S. epidermidis RP62A, these biofilms are not detached with metaperiodate, while proteinase K causes their partial dispersal.  相似文献   

12.
The increased viscosity observed in biofilms, adherent communities of bacterial cells embedded in a polymeric matrix, was hypothesized to induce increased tolerance of bacteria to antibiotics. To test this concept, planktonic Staphylococcus aureus cells were grown and exposed to vancomycin in media brought to specific viscosities in order to mimic the biofilm extracellular polymeric matrix. A viscous environment was observed to decrease the vancomycin susceptibility of planktonic S. aureus to levels seen for biofilms. Both planktonic S. aureus at a viscosity of 100 mPa s and staphylococcal biofilms were able to survive at >500 times the levels of the antibiotic effective against planktonic populations in standard medium. Time-dependent and dose-dependent viability curves revealed that more than one mechanism was involved in high S. aureus tolerance to vancomycin in viscous media. Increased viscosity affects antibiotic susceptibility by reducing diffusion and the mass transfer rate; this mechanism alone, however, cannot explain the increased tolerance demonstrated by S. aureus in viscous media, suggesting that viscosity may also alter the phenotype of the planktonic bacteria to one more resistant to antimicrobials, as seen in biofilms. However, these latter changes are not yet understood and will require further study.  相似文献   

13.
14.
15.
Many of the genes encoding the virulence factors for Staphylococcus aureus are controlled by the accessory gene regulator (agr) and staphylococcal accessory regulator (sar). This regulation may be affected by the environment in which the organisms are grown. In the majority of ecosystems, bacteria grow attached to surfaces and form biofilms. We used S. aureus strains containing mutations inactivating agr and sar to determine whether the presence of these genes influences the attachment of the bacterium to a surface. We also used strains harbouring reporter constructs of the agr and sar operons to determine their expression in biofilms. The attachment study results showed that the sarA mutant strain adhered better to glass than did the agrA mutant or the wild type. There was an increased adherence to fibronectin-coated glass for all three strains compared to glass. Thus, these adhesion studies demonstrate that agr and sar have pleiotrophic effects on the surface expression of molecules responsible for binding to different substrata. In the biofilms higher numbers of bacteria and the greatest expression were observed at the base, but there were no observable differences between the reporter constructs. Expression of the agr and sar reporter fusions was significantly higher in the deepest layers of the biofilms where the greatest numbers of bacteria were also observed, perhaps as one might expect for genes that are regulated in a cell density dependent fashion.  相似文献   

16.
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.  相似文献   

17.
持留菌是细菌群体中的一小部分细菌,可耐受致死浓度抗生素的处理,是引起慢性感染的重要原因。金黄色葡萄球菌(Staphylococcus aureus,S. aureus)作为常见致病菌,有重要临床意义。分别敲除sdhA和sdhB后,金黄色葡萄球菌持留菌形成水平下降,但sdhCAB操纵子对持留菌形成的作用及机制尚不明确。本研究敲除sdh操纵子,通过酸压力、氧化压力、热压力及抗生素压力实验检测敲除株的持留菌水平,转录组测序检测敲除株的代谢通路变化,高通量微生物细胞表型检测评估敲除株的代谢水平变化。结果显示,敲除sdhCAB或sdhAB后,金黄色葡萄球菌对酸压力、氧化压力的耐受能力均下降;而在抗生素压力、热压力条件下,分别仅sdhCAB敲除株、sdhAB敲除株耐受能力下降。转录组测序发现,sdhCAB敲除后三羧酸循环、甲烷代谢通路及聚合酶Ⅳ等基因表达上调,耐药相关基因、氨基酸代谢基因、糖类代谢基因、卟啉代谢基因及一些转运体基因等表达下调,提示这些通路的基因参与sdhCAB影响持留菌形成的过程。此外,高通量微生物细胞表型检测发现,敲除sdhCAB可降低金黄色葡萄球菌对琥珀酸、柠檬酸、糖原、L-天冬氨酸等64种碳源的代谢。结果提示,sdhCAB操纵子对金黄色葡萄球菌持留菌形成水平有重要影响。本研究初步阐明了sdhCAB操纵子影响持留菌形成的可能机制,为研究和治疗金黄色葡萄球菌慢性感染提供了新的思路。  相似文献   

18.
Evolving concepts in biofilm infections   总被引:1,自引:0,他引:1  
Several pathogens associated with chronic infections, including Pseudomonas aeruginosa in cystic fibrosis pneumonia, Haemophilus influenzae and Streptococcus pneumoniae in chronic otitis media, Staphylococcus aureus in chronic rhinosinusitis and enteropathogenic Escherichia coli in recurrent urinary tract infections, are linked to biofilm formation. Biofilms are usually defined as surface-associated microbial communities, surrounded by an extracellular polymeric substance (EPS) matrix. Biofilm formation has been demonstrated for numerous pathogens and is clearly an important microbial survival strategy. However, outside of dental plaques, fewer reports have investigated biofilm development in clinical samples. Typically biofilms are found in chronic diseases that resist host immune responses and antibiotic treatment and these characteristics are often cited for the ability of bacteria to persist in vivo . This review examines some recent attempts to examine the biofilm phenotype in vivo and discusses the challenges and implications for defining a biofilm phenotype.  相似文献   

19.
Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.  相似文献   

20.
The plasmid-encoded beta-lactamase genes of six strains of Staphylococcus aureus were cloned and shown to be expressed in Escherichia coli. The cloned genes were re-introduced into S. aureus via a shuttle vector, and expressed beta-lactamase. However, clones containing only the small amount of DNA found necessary for expression of ampicillin resistance in E. coli did not express beta-lactamase in S. aureus. Much larger pieces of DNA from the original plasmid were necessary to obtain expression in S. aureus. Some of the six strains of S. aureus synthesized beta-lactamase constitutively and some released only a small proportion of the enzyme into the medium. Both these characteristics were maintained in the clones so it is concluded that they are features either of the gene itself or of the surrounding DNA. The cloned genes were sequenced and the putative amino acid sequences of the beta-lactamases were compared. There are several differences between the sequences and in particular one change in the N-terminal region, at a position believed to be especially important for export of proteins from the cell, is thought to have a key effect on whether or not the enzyme is found in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号