首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Certain virus infections depend on the presence of T cell help for the generation of primary CD8(+) T cell responses. However, the mechanisms that render these particular viral infections T cell help dependent is largely unknown. In this study, we compared CD8(+) T cell responses elicited by lymphocytic choriomeningitis virus infection, as prototype of a T cell help independent infection, with T cell help dependent CD8(+) T cell responses induced by vaccinia virus infection. In this paper, we show that a key parameter decisive for T cell help independence is the ability of an infectious agent to stimulate early and robust production of type I IFN. Experimental provision of type I IFN during VV infection rendered the ensuing CD8(+) T cell response completely T cell help independent. Our results support a model in which type I IFN has to be present during the first 3 d of Ag encounter and has to act directly on the responding CD8(+) T cells to promote their survival and effector differentiation. We show that type I IFN signaling on responding CD8(+) T cells induces profound upregulation of CD25 and increased IL-2 expression; however, neither this nor IL-15 accounts for the type I IFN effects on responding CD8(+) T cells. Thus, type I IFN can effectively replace the requirement of T cell help by directly promoting CD8(+) T cell survival and differentiation independent of the type I IFN-induced cytokines IL-2 and IL-15.  相似文献   

2.
The role of type I IFN signaling in CD8 T cells was analyzed in an adoptive transfer model using P14 TCR transgenic CD8 T cells specific for lymphocytic choriomeningitis virus (LCMV) but deficient in type I IFNR. In the present study, we demonstrate severe impairment in the capacity of P14 T cells lacking type I IFNR to expand in normal type I IFNR wild-type C57BL/6 hosts after LCMV infection. In contrast, following infection of recipient mice with recombinant vaccinia virus expressing LCMV glycoprotein, P14 T cell expansion was considerably less dependent on type I IFNR expression. Lack of type I IFNR expression by P14 T cells did not affect cell division after LCMV infection but interfered with clonal expansion. Thus, direct type I IFN signaling is essential for CD8 T cell survival in certain viral infections.  相似文献   

3.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

4.
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.  相似文献   

5.
Although best characterized for sustaining T cell exhaustion during persistent viral infection, programmed death ligand-1 (PDL-1) also stimulates the expansion of protective T cells after infection with intracellular bacterial pathogens. Therefore, establishing the molecular signals that control whether PDL-1 stimulates immune suppression or activation is important as immune modulation therapies based on manipulating PDL-1 are being developed. In this study, the requirement for PDL-1 blockade initiated before infection with the intracellular bacterium Listeria monocytogenes in reducing pathogen-specific T cell expansion is demonstrated. In turn, the role of proinflammatory cytokines triggered early after L. monocytogenes infection in controlling PDL-1-mediated T cell stimulation was investigated using mice with targeted defects in specific cytokines or cytokine receptors. These experiments illustrate an essential role for IL-12 or type I IFNs in PDL-1-mediated expansion of pathogen-specific CD8(+) T cells. Unexpectedly, direct stimulation by neither IL-12 nor type I IFNs on pathogen-specific CD8(+) cells was essential for PDL-1-mediated expansion. Instead, the absence of early innate IFN-γ production in mice with combined defects in both IL-12 and type I IFNR negated the impacts of PDL-1 blockade. In turn, IFN-γ ablation using neutralizing Abs or in mice with targeted defects in IFN-γR each eliminated the PDL-1-mediated stimulatory impacts on pathogen-specific T cell expansion. Thus, innate IFN-γ is essential for PDL-1-mediated T cell stimulation.  相似文献   

6.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

7.
Vaccine-induced memory is necessary for protective immunity to pathogens, but many viruses induce a state of transient immune suppression that might contribute to the inability of a vaccine to elicit immunity. We evaluated here the fate of bystander T cells activated by third party cognate antigens during acute viral infections in vivo, using distinct models to track and specifically activate HY and P14 transgenic bystander CD8 T cells in vivo during acute arenavirus infections of mice. Viral infections acted as stimulatory adjuvants when bystander T cells were exposed to an inflammatory milieu and cognate antigens at the beginning of infections, but bystander CD8 T cell proliferation in response to cognate antigen was inhibited 3 to 9 days after virus infection. Reduced proliferation was not dependent on Fas-FasL- or tumor necrosis factor (TNF)-induced activation-induced cell death or on deficiencies of antigen presentation. Instead, reduced proliferation was associated with a delayed onset of division that was an intrinsic defect of T cells. Inhibition of proliferation could be simulated by exposure of T cells to the Toll-like receptor agonist and type I interferon (IFN) inducer poly(I · C). T cells lacking IFN-α/β receptors resisted both the suppressive effects of preexposure to poly(I · C) and the stimulatory effects of type I IFN, indicating that the timing of exposure to IFN can have negative or positive effects on T cell proliferation. Inhibition of T cell receptor-stimulated bystander CD8 T cell proliferation during acute viral infections may reflect the reduced ability of vaccines to elicit protective immunity when administered during an acute illness.  相似文献   

8.
Differentiation of Ag-specific T cells into IFN-gamma producers is essential for protective immunity to intracellular pathogens. In addition to stimulation through the TCR and costimulatory molecules, IFN-gamma production is thought to require other inflammatory cytokines. Two such inflammatory cytokines are IL-12 and type I IFN (IFN-I); both can play a role in priming naive T cells to produce IFN-gamma in vitro. However, their role in priming Ag-specific T cells for IFN-gamma production during experimental infection in vivo is less clear. In this study, we examine the requirements for IL-12 and IFN-I, either individually or in combination, for priming Ag-specific T cell IFN-gamma production after Listeria monocytogenes (Lm) infection. Surprisingly, neither individual nor combined defects in IL-12 or IFN-I signaling altered IFN-gamma production by Ag-specific CD8 T cells after Lm infection. In contrast, individual defects in either IL-12 or IFN-I signaling conferred partial ( approximately 50%) reductions, whereas combined deficiency in both IL-12 and IFN-I signaling conferred more dramatic (75-95%) reductions in IFN-gamma production by Ag-specific CD4 T cells. The additive effects of IL-12 and IFN-I signaling on IFN-gamma production by CD4 T cells were further demonstrated by adoptive transfer of transgenic IFN-IR(+/+) and IFN-IR(-/-) CD4 T cells into normal and IL-12-deficient mice, and infection with rLm. These results demonstrate an important dichotomy between the signals required for priming IFN-gamma production by CD4 and CD8 T cells in response to bacterial infection.  相似文献   

9.
CD8 T cells need a third signal, along with Ag and costimulation, for effective survival and development of effector functions, and this can be provided by IL-12 or type I IFN. Adoptively transferred OT-I T cells, specific for H-2K(b) and OVA, encounter Ag in the draining lymph nodes of mice with the OVA-expressing E.G7 tumor growing at a s.c. site. The OT-I cells respond by undergoing limited clonal expansion and development of effector functions (granzyme B expression and IFN-gamma production), and they migrate to the tumor where they persist but fail to control tumor growth. In contrast, OT-I T cells deficient for both the IL-12 and type I IFN receptors expand only transiently and rapidly disappear. These results suggested that some signal 3 cytokine is available, but that it is insufficient to support a CTL response that can control tumor growth. Consistent with this, administration of IL-12 at day 10 of tumor growth resulted in a large and sustained expansion of wild-type OT-I cells with enhanced effector functions, and tumor growth was controlled. This did not occur when the OT-I cells lacked the IL-12 and type I IFN receptors, demonstrating that the therapeutic effect of IL-12 results from direct delivery of signal 3 to the CD8 T cells responding to tumor Ag in the signal 3-deficient environment of the tumor.  相似文献   

10.
The kinetics of CD8 T cell IFN-gamma responses as they occur in situ are defined here during lymphocytic choriomeningitis virus (LCMV) infections, and a unique mechanism for the innate cytokines IFN-alphabeta and IL-18 in promoting these responses is defined. Infections of mice with Armstrong or WE strains of LCMV induced an unexpectedly early day 4 IFN-gamma response detectable in serum samples and spleen and liver homogenates. Production of IFN-gamma was MHC class I/CD8 dependent, but did not require IL-12, NK cells, TCR-gammadelta T cells, MHC class II, or CD4 T cells. Peak response required specific Ag recognition, as administration of antagonist peptide partially impaired day 4 IFN-gamma induction, and viral peptide stimulation enhanced CD8 T cell IFN-gamma expression in culture. The IFN-gamma response was associated with IL-18 and IFN-alphabeta expression. Furthermore, both factors augmented peptide-driven IFN-gamma production in culture, and mice lacking IL-18 or IFN-alphabeta functions had reduced day 4 IFN-gamma. Collectively, these results demonstrate that during viral infections, there is a dramatic in vivo CD8 T cell response preceding maximal expansion of these cells, and that the mechanism supporting this response is dependent on endogenous innate cytokines. Because stimulation by microbial products is linked to innate cytokine expression, the studies also suggest a pathway for precisely limiting T cell functions to times of need.  相似文献   

11.
12.
13.
14.
Murine gamma-herpesvirus 68 (MHV-68) is a natural pathogen of small rodents and insectivores (mice, voles and shrews). The primary infection is characterized by virus replication in lung epithelial cells and the establishment of a latent infection in B lymphocytes. The virus is also observed to persist in lung epithelial cells, dendritic cells and macrophages. Splenomegaly is observed two weeks after infection, in which there is a CD4+ T-cell-mediated expansion of B and T cells in the spleen. At three weeks post-infection an infectious mononucleosis-like syndrome is observed involving a major expansion of Vbeta4+CD8+ T cells. Later in the course of persistent infection, ca. 10% of mice develop lymphoproliferative disease characterized as lymphomas of B-cell origin. The genome from MHV-68 strain g2.4 has been sequenced and contains ca. 73 genes, the majority of which are collinear and homologous to other gamma-herpesviruses. The genome includes cellular homologues for a complement-regulatory protein, Bcl-2, cyclin D and interleukin-8 receptor and a set of novel genes M1 to M4. The function of these genes in the context of latent infections, evasion of immune responses and virus-mediated pathologies is discussed. Both innate and adaptive immune responses play an active role in limiting virus infection. The absence of type I interferon (IFN) results in a lethal MHV-68 infection, emphasizing the central role of these cytokines at the initial stages of infection. In contrast, type II IFN is not essential for the recovery from infection in the lung, but a failure of type II IFN receptor signalling results in the atrophy of lymphoid tissue associated with virus persistence. Splenic atrophy appears to be the result of immunopathology, since in the absence of CD8+ T cells no pathology occurs. CD8+ T cells play a major role in recovery from the primary infection, and also in regulating latently infected cells expressing the M2 gene product. CD4+ T cells have a key role in surveillance against virus recurrences in the lung, in part mediated through 'help' in the genesis of neutralizing antibodies. In the absence of CD4+ T cells, virus-specific CD8+ T cells are able to control the primary infection in the respiratory tract, yet surprisingly the memory CD8+ T cells generated are unable to inhibit virus recurrences in the lung. This could be explained in part by the observations that this virus can downregulate major histocompatibility complex class I expression and also restrict inflammatory cell responses by producing a chemokine-binding protein (M3 gene product). MHV-68 provides an excellent model to explore methods for controlling gamma-herpesvirus infection through vaccination and chemotherapy. Vaccination with gp150 (a homologue of gp350 of Epstein-Barr virus) results in a reduction in splenomegaly and virus latency but does not block replication in the lung, nor the establishment of a latent infection. Even when lung virus infection is greatly reduced following the action of CD8+ T cells, induced via a prime-boost vaccination strategy, a latent infection is established. Potent antiviral compounds such as the nucleoside analogue 2'deoxy-5-ethyl-beta-4'-thiouridine, which disrupts virus replication in vivo, cannot inhibit the establishment of a latent infection. Clearly, devising strategies to interrupt the establishment of latent virus infections may well prove impossible with existing methods.  相似文献   

15.
The differentiation of naive CD4 T cells into specific effector subsets is controlled in large part by the milieu of cytokines present during their initial encounter with Ag. Cytokines that drive differentiation of the newly described Th17 lineage have been characterized in vitro, but the cytokines that prime commitment to this lineage in response to infection in vivo are less clear. Listeria monocytogenes (Lm) induces a strong Th1 response in wild-type mice. By contrast, we demonstrate that in the absence of IL-12p40 (or IFN-gamma) and type I IFN receptor signaling, the Th1 Ag-specific CD4 T cell response is virtually abolished and replaced by a relatively low magnitude Th17-dominated response. This Th17 response was dependent on TGF-beta and IL-6. Despite this change in CD4 T cell response, neither the kinetics of the CD4 and CD8 T cell responses, the quality of the CD8 T cell response, nor the ability of CD8 T cells to mediate protection were affected. Thus, generation of protective CD8 T cell immunity was resilient to perturbations that replace a strong Th1-dominated to a reduced magnitude Th17-dominated Ag-specific CD4 T cell response.  相似文献   

16.
17.
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3high HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.  相似文献   

18.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

19.
The role of T cell help for anti-viral CTL responses   总被引:3,自引:0,他引:3  
Cytotoxic T lymphocyte (CTL or CD8) responses are a major branch of the immune system involved in controlling viral infections. Murine models have shown that the development of effective and sustained CD8 cell responses requires CD4 T cell help. However, the precise mechanism in which CD4 cells provide help for CD8 cell responses is still controversial. In the literature, mainly two mechanisms are discussed. According to the "classical" pathway, CD4 cells secrete cytokines, such as IL-2, which promote the responsiveness of the CD8 cells. According to the "CD4-APC-CD8" pathway, CD4 cells specifically activate antigen presenting cells (APCs), and APCs specifically interact with CD8 cells, thereby delivering help. Here, we derive kinetic models in order to describe and compare both pathways of help. We find that the two pathways might have different roles in different situations. The classical pathway is more efficient at inducing CD8 cell expansion at high virus loads, while the CD4-APC-CD8 pathway is more efficient at inducing CD8 cell proliferation at low virus loads. From this, it follows that the classical pathway might be needed in order to kick-start a CD8 cell response in the acute phase of the infection, while the CD4-APC-CD8 pathway is needed in order to ensure virus clearance when virus load is reduced by the immune system. These findings have implications for the interpretation of experimental data from virus infection in helper-deficient hosts. In particular, the models offer further suggestions for the development of treatment regimes aimed at achieving immunological control of HIV infection which has been shown to crucially depend on the availability of helper cell responses.  相似文献   

20.
Dendritic cells (DCs) were recently found to be innate immunity effectors against tumoral cells and viruses. (i) In response to most viruses, including HIV, plasmacytoid DCs are responsible for most of the type I IFN secretion, which is strongly anti-viral and induces TH1 type responses. Myeloid DCs secrete IL-12, which is also important for TH1-type and cytotoxic responses. In HIV patient blood, both DC population numbers decrease as early as the primary stage. Plasmacytoid DC numbers correlate with type I IFN secretion, which is a prognosis predictor, particularly under treatment. IL-12 secretion is also defective. Immunotherapies to replace the defective cytokines or to restore a potentially defective DC-T lymphocyte feed-back might help patients restore their immune responses under antiviral therapy. (ii) After measles and other viral infections, or incubation with dsRNA, DCs become cytotoxic and consequently exhibit natural killer function, through upregulation of type I IFN secretion which enhances TRAIL expression. In HIV infection, this mechanism was not demonstrated yet, but it might a) be responsible for the massive apoptosis of uninfected lymphocytes, and b) increase specific immunity through cross-presentation of antigens from infected cells killed by DCs. (iii) DCs direct expansion and effector functions of NK cells in the absence of adaptive-type cytokines and modulate NKT cell IFN-gamma production. Reciprocally, NK activation triggers DC maturation. HIV-1 Tat inhibits NK cell cytotoxicity directly and probably through inhibition of IL-12 secretion by DC. Therefore, understanding the functions of DCs in innate immune responses and in pathogenesis will help obtain better HIV replication control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号