首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的了解我院临床分离大肠埃希菌产CTX-M型超广谱β-内酰胺酶(ESBLs)的基因型分布情况。方法收集我院临床分离大肠埃希菌200株,按美国临床和实验室标准协会2006年制订的标准确定ESBLs表型。PCR扩增CTX—M耐药基因,扩增产物测序,测序结果与GenBank比对,确定CTX.M基因型。结果200株大肠埃希菌中有94株ESBLs阳性,其中92株CTX-M基因扩增阳性。测序结果表明,大肠埃希菌CTX.M基因型以CTX.M14为主,占67.4%,同时CTX—M3占27.2%,5株未分型。结论大肠埃希菌中产CTX.M型ESBLs的检出率较高,其基因型以CTX.M14和CTX.M3型为主。  相似文献   

2.
目的了解深圳市人民医院重症监护病房分离菌超广谱β-内酰胺酶(ESBLs)的检出率及其基因型分布情况。方法收集来自重症监护病房大肠埃希菌和肺炎克雷伯菌分离株48株,采用CLSI推荐的表型确证方法筛选出ESBLs株,并利用PCR及DNA测序法分析产酶菌株的ESBL基因型。结果(1)48分离株菌中共检出产ESBLs菌24株,阳性率为50.0%。(2)产酶菌中93.8%(15/16)的大肠埃希菌和87.5%(7/8)的肺炎克雷伯菌分别检出CTX-M基因;其中72.7%(16/22)为CTX-M-14。6株肺炎克雷伯菌检出SHV基因,其中3株为SHV-11型,另3株为SHV-12型,6株含SHV基因的肺炎克雷伯菌中5株合并CTX-M基因。而所有大肠埃希菌株均未检出SHV基因。所有产酶菌中,分别有10株大肠埃希菌和2株肺炎克雷伯菌检出TEM-1基因,其中1株大肠埃希菌只检出TEM-1基因,未检出SHV型或CTX-M型基因。结论重症监护病房分离菌ESBLs检出率高,以CTX-M-14为主要基因型。  相似文献   

3.
In line with recent reports of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli isolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producing E. coli isolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate was stx(1) and eae positive and belonged to a major enterohemorrhagic E. coli (EHEC) serotype (O111:H8). Two other isolates were eae positive but stx negative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P = 0.04) and D (P = 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of the bla(CTX-M) genes within the E. coli population from cattle still spared the subpopulation of EHEC/Shiga-toxigenic E. coli (STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.  相似文献   

4.
目的了解产CTX-M型超广谱β-内酰胺酶 (ESBLs) 大肠埃希菌和肺炎克雷伯菌在深圳市人民医院的分布情况.方法应用美国国家临床实验室标准化委员会(NCCLS)推荐的表型确证试验,从2000年6月~2003年8月该院临床标本分离株中筛选出不重复的产ESBLs菌株215株,其中大肠埃希菌151株,肺炎克雷伯菌64株,应用聚合酶链反应(PCR)检测所有产ESBLs株的bla(CTX-M)基因.结果 PCR结果显示,大肠埃希菌bla(CTX-M)基因阳性率为92.1%(139/151),肺炎克雷伯菌的阳性率为65.6%(42/64).bla(CTX-M)基因阳性菌株主要来源于临床送检尿和痰标本,并广泛分布于20多个临床科室.结论该院临床分离的大肠埃希菌和肺炎克雷伯菌产生的ESBL大多数为CTX-M型,该类酶广泛分布于各临床科室,需引起重视.  相似文献   

5.
In this study, we focused on evaluating the occurrence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in fecal samples of healthy ducks and environmental samples from a duck farm in South China. Duck cloacal swabs and pond water samples were cultivated on MacConkey agar plates supplemented with ceftiofur. Individual colonies were examined for ESBL production. Bacteria identified as E. coli were screened for the presence of ESBL and plasmid-borne AmpC genes. The genetic relatedness, plasmid replicon type, and genetic background were determined. Of 245 samples analyzed, 123 had E. coli isolates with ceftiofur MICs higher than 8 μg/ml (116 [50.4%] from 230 duck samples and 7 [46.7%] from 15 water samples). bla(CTX-M), bla(SHV-12), bla(CMY-2), and bla(DHA-1) were identified in 108, 5, 9, and 1 isolates, respectively. The most common bla(CTX-M) genes were bla(CTX-M-27) (n = 34), bla(CTX-M-55) (n = 27), bla(CTX-M-24e) (n = 22), and bla(CTX-M-105) (n = 20), followed by bla(CTX-M-14a), bla(CTX-M-14b), bla(CTX-M-24a), and bla(CTX-M-24b). Although most of the CTX-M producers had distinct pulsotypes, clonal transmission between duck and water isolates was observed. bla(CTX-M) genes were carried by transferable IncN, IncF, and untypeable plasmids. The novel CTX-M gene bla(CTX-M-105) was flanked by two hypothetical protein sequences, partial ISEcp1 upstream and truncated IS903D, iroN, orf1, and a Tn1721-like element downstream. It is suggested that the horizontal transfer of bla(CTX-M) genes mediated by mobile elements and the clonal spread of CTX-M-producing E. coli isolates contributed to the dissemination of bla(CTX-M) in the duck farm. Our findings highlight the importance of ducks for the dissemination of transferable antibiotic resistance genes into the environment.  相似文献   

6.
目的调查温州医科大学附属第一医院ICU病区分离的大肠埃希菌基因的分布以及与耐药谱的关系,并初步探讨其在分子流行病学中的作用。方法收集2012年1-9月ICU病区分离的大肠埃希菌76株进行qnr基因检测,并通过DNA直接测序确定;分析qnr基因在ICU病区分离的大肠埃希菌的分布及其与耐药性的关系。结果根据PCR产物片段大小及测序分析,76株大肠埃希菌中共有qm基因阳性菌株46株,阳性率为60. 5% ;对阳性菌株进行DNA测序、BLAST比对,其中25株为qnrB基因,17株为qnrS基因阳性,12株基因阳性,未检测到qwC和qnrD基因。在46株qnr基因阳性菌株中有38株为产ESBL菌株,而在qnr阴性菌株中仅有5株ESBL阳性。结论该院ICU分离大肠埃希菌qnr基因携带严重,呈现出多重耐药性,多伴随呈现为产ESBL菌株。  相似文献   

7.
Data on CTX-M type extended-spectrum β-lactamase (ESBL) produced by Gram-negative bacteria by molecular methods are limited from India. This study was conducted to investigate the prevalence of CTX-M type ESBL producing Escherichia coli and Klebsiella pneumoniae from nosocomial isolates in a tertiary care hospital in southern India. A total of 179 clinical isolates of K. pneumoniae (n = 72) and E. coli (n = 107) were obtained in a period of 3 months and assessed for ESBL production phenotypically. Associated resistance to a panel of antibiotics and Minimum Inhibitory Concentration for 3rd generation cephalosporins was determined. Phenotypically ESBL positive isolates were subjected to PCR for bla CTX-M gene using two sets of primers for the simultaneous detection of all the five major groups of CTX-M types. All the positive isolates were then subjected to a group specific PCR to detect the prevalent group. Out of 179 isolates, 156 (87.1%) were positive for ESBL phenotypically, which includes 39.2% of K. pneumoniae and 60.8% of E. coli. All of them were examined by PCR using two primers for the presence of bla CTX-M genes. Among the 156 phenotypic positive isolates, 124 (79.4%) were positive for bla CTX-M genes, of which 45 (36.2%) were K. pneumoniae, 79 (63.7%) were E. coli. When the 124 positive clinical isolates were further tested with CTX-M group-specific primers, all were positive for the CTX-M-1 group. Our findings document evidence of the high prevalence of multidrug resistant CTX-M group 1 type ESBL among nosocomial isolates in this region. High co-resistance to other non-β-lactam antibiotics is a major challenge for management of ESBL infections. This is alarming and calls for the judicious use of carbapenems, especially in developing countries. This has significant implications for patient management, and indicates the need for increased surveillance and for further molecular characterization of these isolates.  相似文献   

8.
目的:为预防和治疗质粒介导的超广谱β-内酰胺酶(ESBL)细菌感染提供依据。方法:采用E-test法对可疑细菌进行ESBL检测,用K-B法做药物敏感试验,用WHONET4进行分析。结果:在890株革兰阴性杆菌中检出ESBL44株,其中大肠埃希菌18株、肺炎克雷伯菌10株、阴沟肠杆菌9株、费劳地枸椽酸杆菌3株、嗜水气单胞菌2株、鼠伤寒沙门菌1株、液化沙雷菌1株,对亚胺培菌、呋喃妥因、阿米卡星、环丙沙星的敏感率分别为100%、68.2%、29.5%、25.0%。结论:产ESBL细菌分布广泛、阳性率高、易借助耐药质粒传播,具有较高的交叉耐药性和多重耐药性。  相似文献   

9.
呼吸道产超广谱β-内酰胺酶分离株耐药基因初步分型   总被引:1,自引:0,他引:1  
目的了解产超广谱β-内酰胺酶 (ESBLs)呼吸道分离株的主要基因型分布特点.方法用表型确证试验确定临床呼吸道标本中产ESBLs的大肠埃希菌和肺炎克雷伯菌.应用聚合酶链反应(PCR)方法扩增产ESBLs株的bla(TEM)、bla(SHV)和bla(CTX-M)基因.结果 PCR结果显示bla(TEM)、bla(SHV)和bla(CTX-M)基因的总阳性率分别为40 .7%、45.7%和75.3%,其中大肠埃希菌分别为:64.9%、2.7%和91.9%,肺炎克雷伯菌分别为:20.5%、81.8%和61.4%.67.6%的大肠埃希菌和95.5%的肺炎克雷伯菌同时携带多个基因.结论深圳市人民医院呼吸道分离的产ESBLs大肠埃希菌的主要基因型为CTX-M,肺炎克雷伯菌主要基因型为SHV.大多数菌株同时携带多个基因.  相似文献   

10.
In this study, 417 Escherichia coli isolates from defined disease conditions of companion and farm animals collected in the BfT-GermVet study were investigated for the presence of extended-spectrum β-lactamase (ESBL) genes. Three ESBL-producing E. coli isolates were identified among the 100 ampicillin-resistant isolates. The E. coli isolates 168 and 246, of canine and porcine origins, respectively, harbored bla(CTX-M-1), and the canine isolate 913 harbored bla(CTX-M-15), as confirmed by PCR and sequence analysis. The isolates 168 and 246 belonged to the novel multilocus sequence typing (MLST) types ST1576 and ST1153, respectively, while isolate 913 had the MLST type ST410. The ESBL genes were located on structurally related IncN plasmids in isolates 168 and 246 and on an IncF plasmid in isolate 913. The bla(CTX-M-1) upstream regions of plasmids pCTX168 and pCTX246 were similar, whereas the downstream regions showed structural differences. The genetic environment of the bla(CTX-M-15) gene on plasmid pCTX913 differed distinctly from that of both bla(CTX-M-1) genes. Detailed sequence analysis showed that the integration of insertion sequences, as well as interplasmid recombination events, accounted for the structural variability in the bla(CTX-M) gene regions.  相似文献   

11.
Thirty of 33 epidemiologically unrelated extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from healthy poultry lacked the virulence genes commonly associated with human-pathogenic strains. The main zoonotic risk is associated with the broad host range of avian E. coli belonging to sequence type complex 10 and of IncN and IncI1 plasmids carrying bla(CTX-M) or bla(SHV).  相似文献   

12.
The prevalence of extended-spectrum beta-lactamase (ESBL) production by 194 nosocomial isolates of Enterobacteriacea recovered from 1995 to 1999 was investigated. The ESBL production was determined by the double-disk synergy test and was confirmed by the E-test ESBL strip. Twenty-three isolates (21 Klebsiella pneumoniae, one Escherichia coli, one Providencia rettgeri) were found as ESBL-producers (11.8%). These isolates were also usually resistant to non-betalactam antibiotics. Most of them contained a beta-lactamase with a pI of 7.6. All the strains conjugally transferred their ESBLs to recipient E. coli. Contrary to others, ESBL-producing K. pneumoniae strains isolated in 1999 were resistant to ciprofloxacin, and had the identical plasmid profiles suggestive of an outbreak. Ciprofloxacin resistance in these strains could not be transferred. In conclusion, K. pneumoniae was the main ESBL-producing species among nosocomial isolates of Enterobacteriacae in our hospital.  相似文献   

13.
Strains of Serratia marcescens (isolated in a hospital during April and August 2000) resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin were characterized. Out of a total of 34 clinical isolates 6 (17.6 %) exhibited the extended spectrum beta-lactamases (ESBL) resistance; they were also resistant to cefotaxime (minimum inhibitory concentration, MIC > or = 128 microg/mL) but susceptible to imipenem (MIC < or = 0.5 microg/mL). This multidrug resistance was shown to be transferred by a conjugative plasmid. Transconjugants revealed similar MIC profiles when compared to the parental strains. Isoelectric focusing revealed one major transferable beta-lactamase (pI 8.4) which was further identified as CTX-M-3 by PCR and gene sequencing. The presence of strains with this type of ESBL showed the evolution of bla genes and their dissemination among at least three species of the family Enterobacteriaceae isolated within a single hospital. The predominance of CTX-M type enzymes found in this area of Taiwan appeared to be similar to that described in Poland.  相似文献   

14.
Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter(-1)) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter(-1)) and MCA with nalidixic acid (20 mg liter(-1)) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: bla(CTX-M-1) (6 isolates), bla(CTX-M-9) plus bla(TEM-1b) (1 isolate), bla(CTX-M-15) plus bla(OXA-1) (1 isolate), and bla(SHV-12) (1 isolate). In the isolate with bla(CTX-M-15), the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with bla(TEM-1) in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland.  相似文献   

15.
目的了解深圳市人民医院大肠埃希菌和肺炎克雷伯菌呼吸道分离株超广谱β-内酰胺酶(ESBLs)的基因型特点及耐药性。方法采用临床实验室标准化协会(CLSI)推荐的表型确证试验筛选出该院呼吸道分离株产ESBLs大肠埃希菌和肺炎克雷伯菌共78株。应用PCR及DNA测序法分析产酶株的TEM、SHV及CTX-M3种β-内酰胺酶基因,用琼脂稀释法测定细菌最低抑菌浓度(MIC)。结果 37株产ESBLs大肠埃希菌中,28株(75.7%)检出CTX-M-14基因,4株(10.8%)检出CTX-M-9基因,其他型较少见。41株肺炎克雷伯菌中,25株(61.0%)检出SHV-12基因,4株(9.8%)检出SHV-11基因,其他SHV型较少。20株(48.8%)检出CTX-M-14基因,5株(12.2%)检出CTX-M-3基因,其他型较少。产ESBL菌株均对亚胺培南敏感,对氨苄西林/舒巴坦的耐药率最高(90%),对其他抗生素有不同程度耐药。结论深圳市人民医院呼吸道分离的产ESBLs大肠埃希菌以CTX-M-14型为主,产酶肺炎克雷伯菌以SHV-12和CTX-M-14型为最常见。  相似文献   

16.
The importance of community-acquired infections due to extended-spectrum beta-lactamase-producing (ESBL) Escherichia coli has been increasingly recognized in recent years. No comprehensive data are available on the prevalence, risk factors, and genotypes of ESBL production in community residents in China. Rectal samples from 270 elderly people were collected in four communities in Shenyang (China). Colonies were screened by double-disk synergy test for ESBL production and then, ESBLs were characterized by PCR and sequencing. The clonal relatedness of all ESBL-producing isolates was determined by pulsed-field gel electrophoresis. Potential risk factors for rectal carriage of ESBL producers were examined by multivariate analysis. The prevalence of rectal carriage of ESBL-producing E. coli was 7.0%. All 19 ESBL-producing isolates produced CTX-M-type ESBLs, including CTX-M-14 (11 strains), CTX-M-22 (3 strains), CTX-M-79 (3 strains), CTX-M-24 (1 strain), and CTX-M-24 and CTX-M-79 together (1 strain). CTX-M-79 ESBL was first detected worldwide. ESBL-producing strains were clonally unrelated. Appearance of ESBL producers is strongly associated with the use of antibiotics in the past 3 months (odds ratio 3.2, 95% CI 1.1-9.0, P = 0.03). Our results show the importance of the intestinal tract as a reservoir for ESBL-producing isolates in community settings in China and that the use of antibiotics in the past 3 months is clearly linked to rectal carriage of ESBL producers.  相似文献   

17.
In recent years, extended-spectrum β-lactamases (ESBL) producing bacteria have been found in livestock, mainly as asymptomatic colonizers. The zoonotic risk for people working in close contact to animal husbandry has still not been completely assessed. Therefore, we investigated the prevalence of ESBL-producing Escherichia spp. in livestock animals and workers to determine the potential risk for an animal-human cross-transmission.In Mecklenburg-Western Pomerania, northeast Germany, inguinal swabs of 73 individuals with livestock contact from 23 different farms were tested for ESBL-producing Escherichia spp. Two pooled fecal samples per farm of animal origin from 34 different farms (17 pig farms, 11 cattle farms, 6 poultry farms) as well as cloacal swabs of 10 randomly selected broilers or turkeys were taken at each poultry farm. For identification, selective chromogenic agar was used after an enrichment step. Phenotypically ESBL-producing isolates (n = 99) were tested for CTX-M, OXA, SHV and TEM using PCR, and isolates were further characterized using multilocus sequence typing (MLST). In total, 61 diverse isolates from different sources and/or different MLST/PCR results were acquired. Five farm workers (three from cattle farms and two from pig farms) harbored ESBL-producing E. coli. All human isolates harbored the CTX-M β-lactamase; TEM and OXA β-lactamases were additionally detected in two, resp. one, isolates. ESBL-producing Escherichia spp. were found in fecal samples at pig (15/17), cattle (6/11) and poultry farms (3/6). In total, 70.6% (24/36) of the tested farms were ESBL positive. Furthermore, 9 out of 60 cloacal swabs turned out to be ESBL positive. All isolated ESBL-producing bacteria from animal sources were E. coli, except for one E. hermanii isolate. CTX-M was the most prevalent β-lactamase at cattle and pig farms, while SHV predominated in poultry. One human isolate shared an identical MLST sequence type (ST) 3891 and CTX-M allele to the isolate found in the cattle fecal sample from the same farm, indicating a zoonotic transfer. Two other pairs of human-pig and human-cattle E. coli isolates encoded the same ESBL genes but did not share the same MLST ST, which may indicate horizontal resistance gene transfer. In summary, the study shows the high prevalence of ESBL-producing E.coli in livestock in Mecklenburg- Western Pomerania and provides the risk of transfer between livestock and farm workers.  相似文献   

18.
19.
The incidence of extended-spectrum β-lactamases (ESBLs) has been increasing worldwide, but screening criteria for detection of ESBLs are not standardized for AmpC-producing Enterobacteriaceae such as Enterobacter species. In this study, we investigated the prevalence of ESBLs and/or AmpC β-lactamases in Japanese clinical isolates of Enterobacter spp. and the association of plasmid-mediated quinolone resistance (PMQR) determinants with ESBL producers. A total of 364 clinical isolates of Enterobacter spp. collected throughout Japan between November 2009 and January 2010 were studied. ESBL-producing strains were assessed by the CLSI confirmatory test and the boronic acid disk test. PCR and sequencing were performed to detect CTX-M, TEM, and SHV type ESBLs and PMQR determinants. For ESBL-producing Enterobacter spp., pulsed-field gel electrophoresis (PFGE) was performed using XbaI restriction enzyme. Of the 364 isolates, 22 (6.0%) were ESBL producers. Seven isolates of Enterobacter cloacae produced CTX-M-3, followed by two isolates producing SHV-12. Two isolates of Enterobacter aerogenes produced CTX-M-2. Of the 22 ESBL producers, 21 had the AmpC enzyme, and six met the criteria for ESBL production in the boronic acid test. We found a significant association of qnrS with CTX-M-3-producing E. cloacae. The 11 ESBL-producing Enterobacter spp. possessing bla(CTX-M), bla(SHV), or bla(TEM) were divided into six unique PFGE types. This is the first report about the prevalence of qnr determinants among ESBL-producing Enterobacter spp. from Japan. Our results suggest that ESBL-producing Enterobacter spp. with qnr determinants are spreading in Japan.  相似文献   

20.
The number and proportion of CTX-M positive Escherichia coli organisms were determined in feces from cattle, chickens, and pigs in the United Kingdom to provide a better understanding of the risk of the dissemination of extended-spectrum β-lactamase (ESBL) bacteria to humans from food animal sources. Samples of bovine (n = 35) and swine (n = 20) feces were collected from farms, and chicken cecal contents (n = 32) were collected from abattoirs. There was wide variation in the number of CTX-M-positive E. coli organisms detected; the median (range) CFU/g were 100 (100 × 10(6) to 1 × 10(6)), 5,350 (100 × 10(6) to 3.1 × 10(6)), and 2,800 (100 × 10(5) to 4.7 × 10(5)) for cattle, chickens, and pigs, respectively. The percentages of E. coli isolates that were CTX-M positive also varied widely; median (range) values were 0.013% (0.001 to 1%) for cattle, 0.0197% (0.00001 to 28.18%) for chickens, and 0.121% (0.0002 to 5.88%) for pigs. The proportion of animals designated high-density shedders (≥1 × 10(4) CFU/g) of CTX-M E. coli was 3/35, 15/32, and 8/20 for cattle, chickens, and pigs, respectively. We postulate that high levels of CTX-M E. coli in feces facilitate the dissemination of bla(CTX-M) genes during the rearing of animals for food, and that the absolute numbers of CTX-M bacteria should be given greater consideration in epidemiological studies when assessing the risks of food-borne transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号