首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P) and as the predictability of targets using surrogates (R(2)). A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2). The type of surrogate used (higher-taxa, cross-taxa or subset taxa) was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2), with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.  相似文献   

2.
Aim To examine the influence of spatial scale on the usefulness of commonly employed biodiversity surrogates in subtidal macroalgae assemblages. Location South‐west Australia. Methods The relationship between biodiversity surrogates and univariate and multivariate species‐level patterns was tested at multiple spatial scales, ranging from metres (between quadrats) to hundreds of kilometres (between regions), using samples collected from almost 2000 km of temperate coastline that represented almost 300 species. Biodiversity surrogates included commonly used cost‐effective alternatives to species‐level sampling, such as those derived from functional groups and from taxonomic aggregation. Results Overall, surrogates derived from taxonomic aggregation to genus or family level correlated strongly with species‐level patterns, although the family‐level surrogate was a less effective predictor of species richness at large spatial scales. Surrogates derived from aggregation to coarser taxonomic levels and functional groups performed poorly, while the effectiveness of a surrogate measure derived from canopy‐forming species improved with increasing spatial scale. Main conclusions A critical, but rarely examined, assumption of biodiversity surrogates is that the relationship between surrogate and species‐level patterns is consistent in both space and time, and across a range of spatial and temporal scales. As the performance of all surrogates was, to some degree, scale‐dependent, this work empirically demonstrated the need to consider the spatial extent and design of any biodiversity monitoring programme when choosing cost‐effective alternatives to species‐level data collection.  相似文献   

3.
The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA system and the areas of high fishing pressure has not been assessed. Moreover, evolutionary and functional breadth of species assemblages [3] has been largely overlooked in marine systems. Here we adopted a multifaceted approach to biodiversity by considering the species richness of total, endemic, and threatened coastal fish assemblages as well as their functional and phylogenetic diversity. We show that these fish biodiversity components are spatially mismatched. The MPA system covers a small surface of the Mediterranean (0.4%) and is spatially congruent with the hot spots of all taxonomic components of fish diversity. However, it misses hot spots of functional and phylogenetic diversity. In addition, hot spots of endemic species richness and phylogenetic diversity are spatially congruent with hot spots of fishery impact. Our results highlight that future conservation strategies and assessment efficiency of current reserve systems will need to be revisited after deconstructing the different components of biodiversity.  相似文献   

4.
Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity conservation. Because biodiversity is rooted in place, the task of conserving biodiversity should target places for conservation action; and because all places contain biodiversity, but not all places can be targeted for action, places have to be prioritized. What is needed for this is a measure of the extent to which biodiversity varies from place to place. We do not need a precise measure of biodiversity to prioritize places. Relative estimates of similarity or difference can be derived using partial measures, or what have come to be called biodiversity surrogates. Biodiversity surrogates are supposed to stand in for general biodiversity in planning applications. We distinguish between true surrogates, those that might truly stand in for general biodiversity, and estimator surrogates, which have true surrogates as their target variable. For example, species richness has traditionally been the estimator surrogate for the true surrogate, species diversity. But species richness does not capture the differences in composition between places; the essence of biodiversity. Another measure, called complementarity, explicitly captures the differences between places as we iterate the process of place prioritization, starting with an initial place. The relative concept of biodiversity built into the definition of complementarity has the level of precision needed to undertake conservation planning.  相似文献   

5.
Studies investigating congruent variations in species richness patterns in alpine habitats are scarce. We investigated the potential of using the indicator taxa approach for species richness in alpine habitats of the Scandes (Norway). In four areas, we investigated seven functional and taxonomic terrestrial groups of organisms and evaluated their contribution to the species diversity. The function of each group as a surrogate for the overall species diversity or for the diversity of another taxon was analysed. Three groups of invertebrates (spiders without Lycosids, Lycosids only, and ground beetles), three groups of plants (shrubs, graminoids, and herbs), and lichens were used for a cross-taxon analysis of species diversity. Congruence in species richness was restricted to several significant results, with vascular plants and spiders (Araneae) being best suited as surrogate taxa in alpine habitats of the Scandes. In the cross-taxon analyses they showed strongest significant positive correlations, covering the total species richness of the alpine habitats best. Species counts in one group account for up to 70% of the variation in total species richness. We found only limited evidence for an ideal, efficient biodiversity indicator taxon that could be applied without restrictions at different alpine habitats in low and middle alpine areas. Thus, our results suggest that it is very important to use more than one taxon as indicator for species richness in terrestrial alpine habitats. This should facilitate future conservation planning in alpine areas.  相似文献   

6.
Wetlands are among the most threatened habitats and the species they support among the most endangered taxa. Measuring and monitoring wetland biodiversity is vital for conservation, restoration and management, and often relies on the use of surrogate taxa. Waterbirds are commonly used as flagships of biodiversity and are the subject of major conservation initiatives. Therefore, it is important to assess the extent to which waterbirds indicate the general biodiversity of wetlands and serve as surrogates.We explore the relationships between community composition and species richness of waterbirds and aquatic macroinvertebrates in 36 Ramsar wetlands in southern Spain to assess if waterbirds are good surrogates for other taxonomic groups. Specifically, we aimed to (i) test the congruence of patterns of species composition and richness among waterbirds and aquatic macroinvertebrates; and (ii) investigate which environmental variables are associated with the biodiversity patterns of waterbirds and macroinvertebrates, with the purpose of identifying key factors explaining potential discordance in these patterns.We found a limited concordance between assemblage patterns of both taxonomic groups that may be related to their contrasting responses to environmental gradients. Assemblages of waterbirds appear to be more affected by climate variables and water surface area, whereas conductivity was the most important factor influencing macroinvertebrate communities. Furthermore, we found a negligible or inverse relationship in their patterns of richness, with wetlands with higher waterbird species richness showing significantly lower richness of Hemiptera and macroinvertebrate families, and no significant relationship with Coleoptera. In addition, GLM models showed that, in general, different environmental variables are related with the richness patterns of the different taxonomic groups.Given the importance of the Ramsar convention for the conservation of an international network of wetlands, our findings underline the limited potential of waterbirds as aquatic biodiversity indicators in Mediterranean wetlands, and the need for caution when using waterbirds as flagships. An integrative analysis of different biological communities, using datasets from different taxonomic groups, is a necessary precursor for successful conservation policies and monitoring. Our results illustrate the need to create a diversified and complete network of protected sites able to conserve multiple components of wetland biodiversity.  相似文献   

7.
Effective representation of biodiversity in a marine park can be limited by lack of sampling at a suitable scale due to various methodological, logistical and taxonomic constraints. Surrogates that describe key components of biodiversity can benefit management planning and assist evaluation of zoning arrangements by improving efficiency and effectiveness of sampling. Reef fish are considered an important component of biodiversity in the Solitary Islands Marine Park (SIMP), New South Wales, Australia. Fish assemblages were surveyed using 30-min timed counts at 68 sites spread across the extent of shallow reef in the SIMP. The overall assemblage was compared with various subsets of taxa using the RELATE procedure in PRIMER to determine useful surrogates. Two families, Labridae and Pomacentridae, showed a high concordance with overall patterns and the highest correlation in estimating species richness by site. These families were the two most speciose (43, 32 species, respectively) comprising 30% of the species richness out of 66 families and 254 species. Surveying a subset of species that includes these two families has utility for marine park management in the SIMP, including evaluating the influence of ‘no take’ zones on assemblage patterns and systematic planning for biodiversity representation.  相似文献   

8.
Resources for biodiversity surveys and conservation planning are limited, and conservation biologists and environmental managers are thus striving to find suitable surrogates for mapping and predicting biodiversity. Among popular surrogates are indicator groups that could be used for predicting variation in the biodiversity of other taxonomic groups. Despite some success at large scales, surveys of multiple taxonomic groups across ecosystems have suggested that no single group can be used effectively to predict variation in the biodiversity of other taxonomic groups. This paper concentrates on indicator groups and cross-taxon congruence in species richness and assemblage composition patterns in inland aquatic ecosystems. As has been found in studies of terrestrial ecosystems, there is low utility for indicator groups in predicting the biodiversity of other taxa in aquatic ecosystems. Even when statistically highly significant correlations between taxonomic groups have been detected, these correlations have been too weak to provide reliable predictions of biodiversity among various taxonomic groups or biodiversity in general. Indicator groups and, more generally, cross-taxon congruence thus do not appear to be particularly relevant for conservation in the freshwater realm.  相似文献   

9.
The choice of surrogates of biodiversity is an important aspect in conservation biology. The quantification of the coincidence in the spatial patterns of species richness and rarity between different groups and the vulnerability of groups are different approaches frequently considered to accomplish this task. However, a more appropriate approach is to verify the efficiency of priority networks selected using information from one group of organisms to capture the biodiversity of other groups. Using a deconstructive approach, the main purposes of this study were to evaluate the performance of some orders and families of birds in the Cerrado biome (a savanna-like biome) as surrogates of other bird groups, in a pairwise analysis, and to investigate the characteristics of these groups that predict the efficiency in representation of other groups. We used biogeographical data on bird orders or families with more than 10 species that occur in the Brazilian Cerrado. The best surrogate group was the Thamnophilidae. Moreover, this group is not the most specious, favouring further survey efforts that are necessary to verify the conservation value of areas at suitable scales. The majority of the species from this family are dependent on forest habitats, one of the characteristics that most influenced representativeness level, probably due to the spatial distribution of these habitats throughout the Brazilian Cerrado. Beta diversity patterns of the different groups also affected representativeness, and our analyses showed that the networks selected by a surrogate group will be more effective in the representation of other groups of species if their patterns of beta diversity (not richness) are correlated.  相似文献   

10.
The marine‐terrestrial richness gradient is among Earth's most dramatic biodiversity patterns, but its causes remain poorly understood. Here, we analyse detailed phylogenies of amniote clades, paleontological data and simulations to reveal the mechanisms underlying low marine richness, emphasising speciation, extinction and colonisation. We show that differences in diversification rates (speciation minus extinction) between habitats are often weak and inconsistent with observed richness patterns. Instead, the richness gradient is explained by limited time for speciation in marine habitats, since all extant marine clades are relatively young. Paleontological data show that older marine invasions have consistently ended in extinction. Simulations show that marine extinctions help drive the pattern of young, depauperate marine clades. This role for extinction is not discernible from molecular phylogenies alone, and not predicted by most previously hypothesised explanations for this gradient. Our results have important implications for the marine‐terrestrial biodiversity gradient, and studies of biodiversity gradients in general.  相似文献   

11.
Relationships among taxonomic, functional, and phylogenetic dimensions of biodiversity provide insight about the relative contributions of ecological and evolutionary processes in structuring local assemblages. We used data for rodent species distributions from an extensive tropical elevational gradient to 1) describe elevational gradients for each of three dimensions of biodiversity, 2) evaluate the sufficiency of species richness as a surrogate for other dimensions, and 3) quantify the relative support for mechanisms that increase or decrease phylogenetic or functional dispersion. Taxonomic biodiversity was quantified by species richness, as well as by richness, evenness, diversity, dominance, and rarity at generic and familial levels. Morphological and categorical traits were used to estimate functional biodiversity, and an ultrametric mammalian supertree was used as the basis for estimating phylogenetic biodiversity. Elevational gradients of each dimension of biodiversity were strong, with significant linear and non‐linear components based on orthogonal polynomial regression. Empirical linear and non‐linear regression components were consistently different than those expected based on species richness for generic, familial, and phylogenetic biodiversity, but not for functional biodiversity. Nevertheless, the congruence of dimensions of biodiversity based on correlation analyses indicated that any one dimension is a useful surrogate for the other dimensions for rodents at Manu. Given variation in species richness, assemblages from lowland rainforests comprised more biodiversity than expected, whereas assemblages from cloud and elfin forests represented less biodiversity than expected. Warm temperatures, vertical complexity of the vegetation, and high productivity likely facilitate niche differentiation in rainforests, whereas cricetid rodents are competitively superior to other clades in the less structurally complex, less productive, and colder, high elevation habitats.  相似文献   

12.
Many studies have tested the performance of terrestrial vertebrates as surrogates for overall species diversity, because these are commonly used in priority‐setting conservation appraisals. Using a database of 3663 vertebrate species in 38 Brazilian ecoregions, we evaluated the effectiveness of various subsets for representing diversity of the entire vertebrate assemblage. Because ecoregions are established incorporating information on biotic assemblages, they are potentially more amenable to regional comparison than are national or state lists. We used 10 potential indicator groups (all species; all mammals, birds, reptiles, or amphibians; all endemic species; and endemic species within each class) to find priority sets of ecoregions that best represent the entire terrestrial vertebrate fauna. This is the first time such tests are employed to assess the effectiveness of indicator groups at the ecoregion level in Brazil. We show that patterns of species richness are highly correlated among mammals, birds, amphibians, and reptiles. Furthermore, we demonstrate that ecoregion sets selected according to endemic species richness captured more vertebrate species per unit area than sets based on overall vertebrate richness itself, or than those selected at random. Ecoregion sets based on endemic bird, endemic reptile, or endemic amphibian richness also performed well, capturing more species overall than random sets, or than those selected based on species richness of one or all vertebrate classes within ecoregions. Our results highlight the importance of evaluating biodiversity concordance and the use of indicator groups as well as aggregate species richness. We conclude that priority sets based on indicator groups provide a basis for a first assessment of priorities for conservation at an infracontinental scale. Areas with high endemism have long been highlighted for conservation of species. Our findings provide evidence that endemism is not only a worthwhile conservation goal, but also an effective surrogate for the conservation of all terrestrial vertebrates in Brazil.  相似文献   

13.
Surrogate species approaches, including flagship, focal, keystone, indicator, and umbrella, are considered an effective means of conservation planning. For conservation biologists to apply surrogates with confidence, they must have some idea of the effectiveness of surrogates for the circumstances in which they will be applied. We reviewed tests of the effectiveness of surrogate species planning to see if research supports the development of generalized rules for (1) determining when and where surrogate species are an effective conservation tool and (2) how surrogate species should be selected such that the resulting conservation plan will effectively protect biodiversity or achieve other conservation goals. The context and methods of published studies were so diverse that we could not draw general conclusions about the spatial or temporal scales, or ecosystems or taxonomic groups for which surrogate species approaches will succeed. The science of surrogate species can progress by (1) establishing methods to compare diverse measures of effectiveness; (2) taking advantage of data-rich regions to examine the potential effectiveness of surrogate approaches; (3) incorporating spatial scale as an explanatory variable; (4) evaluating surrogate species approaches at broader temporal scales; (5) seeking patterns that will lead to hypothesis driven research; and (6) monitoring surrogate species and their target species.  相似文献   

14.
The lack of species inventory data for most marine habitats currently hampers the objective management of marine biodiversity. There is thus a clear need to find reliable indicator taxa that can be targeted in marine conservation studies, providing cost-effective data for planning and monitoring. Using the rocky shores of the Solitary Islands Marine Park, NSW, Australia, as a model, I evaluated macroinvertebrates and determined which taxa (i) best reflected ecological patterns of the broader intertidal community; and (ii) were able to accurately predict species richness of assemblages at the headland scale. Both molluscs and crustaceans showed high levels of correlation with overall species richness. However, molluscs, and in particular prosobranchs, most closely reflected patterns in the community data and provided the most accurate predictions of species richness at the scale of the headland. The potential time savings of using molluscs in rapid assessments are considerable and relate to reductions in field time (by up to 40%) as well as the reduced need to invest time developing extensive taxonomic knowledge of other invertebrate groups. Molluscs are widespread and easily sampled, with stable taxonomy and well-known ecology relative to other marine invertebrate taxa. Their use as surrogates of biodiversity shows great potential for future marine conservation studies.  相似文献   

15.
A fundamental decision in biodiversity assessment is the selection of one or more study taxa, a choice that is often made using qualitative criteria such as historical precedent, ease of detection, or available technical or taxonomic expertise. A more robust approach would involve selecting taxa based on the a priori expectation that they will provide the best possible information on unmeasured groups, but data to inform such hypotheses are often lacking. Using a global meta‐analysis, we quantified the proportion of variability that each of 12 taxonomic groups (at the Order level or above) explained in the richness or composition of other taxa. We then applied optimization to matrices of pairwise congruency to identify the best set of complementary surrogate groups. We found that no single taxon was an optimal surrogate for both the richness and composition of unmeasured taxa if we used simple methods to aggregate congruence data between studies. In contrast, statistical methods that accounted for well‐known drivers of cross‐taxon congruence (spatial extent, grain size, and latitude) lead to the prioritization of similar surrogates for both species richness and composition. Advanced statistical methods were also more effective at describing known ecological relationships between taxa than simple methods, and show that congruence is typically highest between taxonomically and functionally dissimilar taxa. Birds and vascular plants were most frequently selected by our algorithm as surrogates for other taxonomic groups, but the extent to which any one taxon was the ‘optimal’ choice of surrogate for other biodiversity was highly context‐dependent. In the absence of other information – such as in data‐poor areas of the globe, and under limited budgets for monitoring or assessment – ecologists can use our results to assess which taxa are most likely to reflect the distribution of the richness or composition of ‘total’ biodiversity.  相似文献   

16.
Landscape features are often used as surrogates for biodiversity. While landscape features may perform well as surrogates for coarse metrics of biodiversity such as species richness, their value for monitoring population trends in individual species is virtually unexplored. We compared the performance of a proposed habitat surrogate for birds, percentage cover of vegetation overstory, for two distinct aspects of bird assemblages: community diversity (i.e. species richness) and population trends. We used four different long-term studies of open woodland habitats to test the consistency of the relationship between overstory percentage cover and bird species richness across a large spatial extent (>1000 km) in Australia. We then identified twelve bird species with long-term time-series data to test the relationship between change in overstory cover and populations trends. We found percentage cover performed consistently as a surrogate for species richness in three of the four sites. However, there was no clear pattern in the performance of change in percentage cover as a surrogate for population trends. Four bird species exhibited a significant relationship with change in percentage overstory cover in one study, but this was not found across multiple studies. These results demonstrate a lack of consistency in the relationship between change in overstory cover and population trends among bird species, both within and between geographic regions. Our study demonstrates that biodiversity surrogates representing community-level metrics may be consistent across regions, but provide only limited information about individual species population trends. Understanding the limitations of the information provided by a biodiversity surrogate can inform the appropriate context for its application.  相似文献   

17.
Understanding the biology of rare species is a very important part of conservation biology. Most of our current understanding of rarity has, however, come from studies of terrestrial plants, birds, mammals and some insects. Freshwater and marine habitats are underrepresented in published studies of rare species or conservation biology. We therefore have little knowledge about how well our understanding of what makes particular species rare and how rare species persist applies to marine invertebrates which form a major component of coastal biodiversity. In this review, I examine some theories about rarity with respect to intertidal and shallow subtidal invertebrates to identify whether there are adequate data to apply these theories to marine invertebrates and how well such theories apply. The general conclusions are that the lack of quantitative data on abundances, ranges, habitat-requirements, dispersal and connectedness among populations for marine invertebrates means that their status as rare species cannot really be assessed appropriately. It is also unlikely that, without extensive sampling programmes and considerable expense, adequate data could be obtained for these small, cryptic animals, which typically have very patchy, variable and unpredictable patterns of distribution and abundance. Intertidal and subtidal assemblages are diverse, including species with many different life-histories from many phyla, occupying the same suite of habitats. It is therefore suggested that future research on rare organisms in marine habitats should build upon the long and successful history of experimental marine studies to test specific hypotheses about processes influencing rarity in the field. Such studies would not only add a new dimension to our current understanding of rarity, but would also provide badly-needed data on the status of rare marine invertebrates. abundances, invertebrates, marine, range, rarity  相似文献   

18.
Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.  相似文献   

19.
The urgent need to conserve aquatic biodiversity and the lack of spatial data on biodiversity has motivated conservation planners and researchers to search for more readily obtainable information that could be used as proxies or surrogates. The surrogate taxon approach shows promise in some aquatic environments (e.g. intertidal) but not others (e.g. coral reefs, temperate rocky reefs). Estuaries are transitional environments at the land–sea junction with a unique biodiversity, but are the most threatened of aquatic environments because of high levels of human use. The comparatively small numbers of conservation reserves means that estuarine biodiversity is poorly protected. Selecting additional conservation reserves within estuaries would be facilitated by the identification of a suitable surrogate that could be used in conservation planning. In one estuary in Southeast Australia, we evaluated separately the effectiveness of annelids, arthropods, and molluscs as surrogates for predicting the species richness, abundance, assemblage variation, and summed irreplaceability of other species and for coincidentally representing other species in networks of conservation reserves selected for each surrogate. Spatial patterns in the species richness and assemblage variation (but not summed irreplaceability) of each surrogate were significantly correlated with the spatial patterns of other species. The total abundance of annelids and the total abundance of arthropods were each significantly correlated with the total abundances of other species. Networks of conservation reserves selected to represent each surrogate performed significantly better than random selection in representing other species. The greatest number of non-surrogate species was coincidentally included in reserves selected for the group of mollusc species. We conclude that annelids and arthropods are effective surrogate taxa for identifying spatial variation in several measures of conservation value (species richness, abundance, assemblage variation) in estuaries. We also conclude that spatial data on annelids, arthropods or molluscs can be used to select networks of conservation reserves in estuaries. The demonstrated effectiveness of these surrogates should facilitate future conservation planning within estuaries.  相似文献   

20.
Aim Urbanization is a major driver of global land‐use change, substantially modifying patterns of biodiversity. Managing these impacts has become a conservation priority. The creation and maintenance of greenways, such as river corridors, is frequently promoted as a strategy for mitigating habitat fragmentation in urban areas by bringing semi‐natural habitat cover into city centres. However, there is little evidence to support this assertion. Here, we examine whether riparian zones maintain semi‐natural habitat cover in urban areas and how species richness varies along such zones. Location Sheffield, Northern England. Methods Multiple taxonomic groups (birds, butterflies, plants) were surveyed at 105 sites spanning seven riparian corridors that transect the study system. For all groups, we model the relationships between species richness and environmental variables pertinent to an urban system. To test whether riparian zones can act to maintain semi‐natural habitats within a city, we modelled the proportion of semi‐natural land cover within 250 m grid squares that do, and do not, contain a river. Results Species richness varied markedly in relation to distance from the urban core. Trends differed both between taxonomic groups and between rivers, reflecting the complex patterns of environmental variation associated with cities. This suggests that biodiversity surveys that focus on a single group or transect cannot reliably be used as surrogates even within the same city. Nonetheless, there were common environmental predictors of species richness. Plant, avian and butterfly richness all responded positively to Habitat Diversity and the latter two declined with increases in sealed surface. Main conclusions Multiple transects and taxonomic groups are required to describe species richness responses to urbanization as no single pattern is evident. Although riparian zones are an important component of the mosaic of urban habitats, we find that river corridors do not disproportionately support tree and Natural Surface Cover when compared to non‐riverine urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号