共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of chloride uptake in rabbit corneal epithelium 总被引:1,自引:0,他引:1
Bonanno J. A.; Klyce S. D.; Cragoe E. J. Jr 《American journal of physiology. Cell physiology》1989,257(2):C290
2.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2020,1865(9):158728
Dry eye disease (DED) is a multifactorial chronic inflammatory disease of the ocular surface characterized by tear film instability, hyperosmolarity, cell damage and inflammation. Hyperosmolarity is strongly established as the core mechanism of the DED. Benzalkonium chloride (BAK) - a quaternary ammonium salt commonly used in eye drops for its microbicidal properties - is well known to favor the onset of DED. Currently, little data are available regarding lipid metabolism alteration in ocular surface epithelial cells in the course of DED. Our aim was to explore the effects of benzalkonium chloride or hyperosmolarity exposure on the human corneal epithelial (HCE) cell lipidome, two different conditions used as in vitro models of DED. For this purpose, we performed a lipidomic analysis using UPLC-HRMS-ESI+/−. Our results demonstrated that BAK or hyperosmolarity induced important modifications in HCE lipidome including major changes in sphingolipids, glycerolipids and glycerophospholipids. For both exposures, an increase in ceramide was especially exhibited. Hyperosmolarity specifically induced triglyceride accumulation resulting in lipid droplet formation. Conversely, BAK induced an increase in lysophospholipids and a decrease in phospholipids. This lipidomic study highlights the lipid changes involved in inflammatory responses following BAK or hyperosmolarity exposures. Thereby, lipid research appears of great interest, as it could lead to the discovery of new biomarkers and therapeutic targets for the diagnosis and treatment of dry eye disease. 相似文献
3.
Intracellular activities of chloride, potassium and sodium ions in rabbit corneal epithelium 总被引:1,自引:0,他引:1
The mechanism of ion transport in the epithelium of rabbit cornea was studied by determining the intracellular ion activity of Cl-, Na+ and K+ under various conditions. Ionic activities were measured by means of microelectrodes containing liquid ion-exchangers selective for Cl-, Na+ or K+. The Cl- activity in basal cells of the epithelium in Na+ containing bathing solutions amounts to 28 +/- 2 mM (n = 11). This value is 1.9-times greater than expected on the basis of passive distribution across the tear side membrane. This finding suggests the existence of a Cl- accumulating process. Replacement of Na+ in the aqueous bathing solution by choline or tetraethylammonium results in a reversible decrease in Cl- activity to 22 +/- 1 mM (n = 11, P less than 0.025). The ratio of observed and predicted Cl- activity decreased significantly from 1.9 to 1.4 (P less than 0.05). The decrease in Cl- activity due to Na+ replacement was rather slow. In contrast, after readmittance of Na+ to the aqueous bathing solution, Cl- activity rose to a stable level within 30 min. These results indicate involvement of Na+ in Cl- accumulation into the basal cells of the epithelium. The K+ and Na+ activities of the basal cells of rabbit corneal epithelium in control bathing solutions were 75 +/- 4 mM (n = 13) and 24 +/- 3 mM (n = 12), respectively. The results can be summarized in the following model for Cl- transport across corneal epithelium. Cl- is accumulated in the basal cells across the aqueous side membrane, energized by a favourable Na+ gradient. Cl- will subsequently leak out across the tear side membranes. Na+ is extruded again across the aqueous side membrane of the epithelium by the (Na+ + K+)-ATPase. 相似文献
4.
The prediction of side-effects is a key issue in the REACH initiative on chemicals, in the production of cosmetics and in the preclinical testing of drugs. A new ex vivo test for repeated substance application is presented, that is able to identify corrosive and irritant effects on the eye by using crucial endpoints, such as cellular and morphological damage, and healing characteristics. The test is intended to replace the Draize eye test and to improve the preclinical testing of drugs and chemicals that are likely to come into direct contact with the cornea. The Ex Vivo Eye Irritation Test (EVEIT) is a self-healing system, involving living corneas obtained from abattoir rabbit eyes. The corneas are cultured in a similar way to the method used during the transplantation of corneal grafts. The corneas are exposed to multiple small, mechanical abrasions, and then test substances are repeatedly dropped onto the centres of the corneas. The test substances applied in this study were citrate-buffered hyaluronate eye drops and an artificial tear replacement, with increasing concentrations of up to 0.1% benzalkonium chloride. A dose-dependent inhibition of recovery and impairment of the lactate production mechanism in the cornea was observed with benzalkonium chloride treatment. 相似文献
5.
V S Valvas 《Biulleten' eksperimental'no? biologii i meditsiny》1976,82(11):1367-1369
A study was made of pain stimulus (amputation of 1/3 of the tail) on the mitotic activity in the corneal epithelium of 21-day fetuses, 1-, 3-, 4-, 5-, 7-, 10-, 15-, 20- and 25-day rats. In 45 minutes after the infliction of trauma no significant change was seen in the cornea of the fetuses and of the one-day-old ratlings. A gradual establishment of the reactive inhibition of mitoses in response to pain occurred between the 3rd and the 10th day of postnatal development. This reaction became more intense after the 10th day, reaching the maximum by the 25th day. Reactive inhibition of the mitotic activity was connected with the inhibition of the entrance of cells into mitosis. 相似文献
6.
Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo. 相似文献
7.
8.
Summary Cell volume determinations and electrophysiological measurements have been made in an attempt to determine if mitochondria-rich (MR) cells are localized pathways for conductive movements of Cl across frog skin epithelium. Determinations of cell volume with video microscope techniques during transepithelial passage of current showed that most MR cells swell when the tissue is voltage clamped to serosa-positive voltages. Voltage-induced cell swelling was eliminated when Cl was removed from the mucosal bath solution. Using a modified vibrating probe technique, it was possible to electrically localize a conductance specifically to some MR cells in some tissues. These data are evidence supporting the idea that MR cells are pathways for conductive movements of Cl through frog skin epithelium. 相似文献
9.
Background
Normal airway epithelial barrier function is maintained by cell-cell contacts which require the translocation of adhesion proteins at the cell surface, through membrane vesicle trafficking and fusion events. Myoferlin and dysferlin, members of the multiple-C2-domain Ferlin superfamily, have been implicated in membrane fusion processes through the induction of membrane curvature. The objectives of this study were to examine the expression of dysferlin and myoferlin within the human airway and determine the roles of these proteins in airway epithelial homeostasis.Methods
The expression of dysferlin and myoferlin were evaluated in normal human airway sections by immunohistochemistry, and primary human airway epithelial cells and fibroblasts by immuno blot. Localization of dysferlin and myoferlin in epithelial cells were determined using confocal microscopy. Functional outcomes analyzed included cell adhesion, protein expression, and cell detachment following dysferlin and myoferlin siRNA knock-down, using the human bronchial epithelial cell line, 16HBE.Results
Primary human airway epithelial cells express both dysferlin and myoferlin whereas fibroblasts isolated from bronchi and the parenchyma only express myoferlin. Expression of dysferlin and myoferlin was further localized within the Golgi, cell cytoplasm and plasma membrane of 16HBE cells using confocal micrscopy. Treatment of 16HBE cells with myoferlin siRNA, but not dysferlin siRNA, resulted in a rounded cell morphology and loss of cell adhesion. This cell shedding following myoferlin knockdown was associated with decreased expression of tight junction molecule, zonula occludens-1 (ZO-1) and increased number of cells positive for apoptotic markers Annexin V and propidium iodide. Cell shedding was not associated with release of the innate inflammatory cytokines IL-6 and IL-8.Conclusions/Significance
This study demonstrates the heterogeneous expression of myoferlin within epithelial cells and fibroblasts of the respiratory airway. The effect of myoferlin on the expression of ZO-1 in airway epithelial cells indicates its role in membrane fusion events that regulate cell detachment and apoptosis within the airway epithelium. 相似文献10.
Klavs Holtug Al Shipley Vibeke Dantzer Ove Sten-Knudsen Erik Skadhauge 《The Journal of membrane biology》1991,122(3):215-229
Summary Hen coprodeum absorbs sodium electrogenically and, when stimulated by theophylline, secretes chloride. In this study the vibrating microprobe technique was used to localize the transport of these ions to intestinal villi/folds and crypts. With the isolated, stretched epithelium, controlled by light microscopy and scanning electron microscopy, in open circuit, currents were inward, 40±7 A/cm2, 50 m vertically above villi, and outward, 36±7 A/cm2 above crypts. The currents decayed exponentially to near zero at 300 m with the same length constant. A physical model simulating the observed loci of current sources and sinks predicts potential profiles consistent with our data. Extrapolation of the currents gives a surface potential of 45 V, negative on villi and positive above crypts. Short circuiting increased villus current to 86±27 A/cm2 at 50 m, and amiloride treatment reduced it to –8 A/cm2; in both cases crypt currents were abolished. The inward currents are compatible with sodium absorption. Induction of chloride secretion after amiloride treatment, resulted in current circuits similar to those induced by sodium absorption, with villus currents of 23±7 A/cm2. This is in accord with chloride secretion at the villi. Quantitative estimates of crypt number (860/cm2) and opening diameter (15 m), in conjunction with isotopic measurements of active and electrical potential-driven ion fluxes demonstrate, however, that only 4% of the potential-driven co-ion transport occurs through the crypts. This indicates that nearly all chloride secretion comes from the sodium-absorbing villar area. Were the chloride secretion to occur solely from the crypts, the current should have been in the opposite direction and 10,000-fold larger. 相似文献
11.
Connon CJ Kawasaki S Liles M Koizumi N Yamasaki K Nakamura T Quantock AJ Kinoshita S 《Cell and tissue research》2006,323(1):177-182
The spatial and temporal localisation of a calcium-activated chloride channel (CLCA) and its mRNA was investigated, during
the in vivo and in vitro development of stratified epithelia, by fluorescence immunohistochemistry and quantitative polymerase
chain reaction in embryonic chicken corneas and the expansion of excised human corneal stem cells on amniotic membrane. Single-layered
human epithelial cultures on amniotic membrane and early day embryonic chicken corneas expressed relatively little human CLCA2
or its chicken homologue. However, as the epithelium in both models matured and the number of cell-layers increased, the gene
expression level and protein staining intensity increased, primarily within the basal cells of both the cultured and embryonic
tissues. These results demonstrate that human CLCA2 protein and mRNA expression are elevated during epithelial stratification,
suggesting that this protein plays a role in the growth of multi-layered corneal epithelia during both natural development
and tissue cultivation.
This work was supported by the Japanese Society for the Promotion of Science (CJC) and The Royal Society (C.J.C.). 相似文献
12.
13.
14.
15.
16.
17.
Xue Y Hieda Y Kimura K Takayama K Fujihara J Tsujino Y 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,811(1):53-58
Kinetic characteristics and toxic effects of benzalkonium chloride (BZK) following injection via jugular vein (JV), femoral artery (FA) and oral administration (PO) were experimentally investigated using rats. The BZK concentrations in blood and tissues (lung, liver and kidney) were determined by high-performance liquid chromatography with solid phase extraction. Toxic doses of 15 and 250 mg/kg of BZK were used for intravascular (JV and FA) and PO administration, respectively. The fatal effects appeared soon after the dose in JV-rats, while delayed in FA- or PO-rats. The blood BZK concentrations and the elimination half-lives were similar between JV- and FA-rats, while the distribution of BZK in tissues was slightly different. In PO administration, the rats that aspirated BZK into their lungs had some symptoms, while the rats that did not aspirate BZK appeared to be normal. The BZK concentrations in blood and tissues were significantly higher in the aspirated PO-rats. The toxic degree of BZK was correlated with the BZK concentration in orally dosed rats. Lung and kidney had higher BZK concentrations compared to blood or liver, and they could be the target organs of BZK.Keyword: Benzalkonium chloride 相似文献
18.
Localization of occludin, ZO-1, and pan-cadherin in rabbit ciliary epithelium and iris vascular endothelium 总被引:2,自引:0,他引:2
Previous studies have used conventional electron microscopy and freeze fracture to identify the morphological equivalents of the blood-aqueous barrier in the mammalian eye. These equivalents are the tight junctions that form a part of the apicolateral junctional complex between adjacent non-pigmented ciliary epithelial cells and the tight junctions present between endothelial cells of the iris vasculature. Recent investigations have begun to unravel the molecular assembly of the tight junction and some variability has been found. Our goal in the present study was to probe the ciliary epithelium and iris vascular endothelium of the rabbit eye to determine if certain molecular constituents associated with tight junctions in other tissues are also present as parts of the blood-aqueous barrier. The selected constituents were occludin, ZO-1, and a representative, adherens junction-related cadherin. Immunohistochemical and immunoelectron microscopic methods were used. The results showed that occludin was distributed exclusively at known locations of tight junctions. ZO-1 was also expressed at these locations but its distribution extended beyond that of occludin, along the adjacent membranes. Pan-cadherin was expressed ubiquitously within the ciliary epithelium and negligibly in iris vascular endothelium. Our results demonstrate that occludin and ZO-1 are integral components of the blood-aqueous barrier of the normal rabbit eye. 相似文献
19.
20.
W J Armitage 《Cryobiology》1989,26(4):318-327
Corneal endothelium, a monolayer of cells lining the inner surface of the cornea, is particularly susceptible to freezing injury. Ice formation damages the structural and functional integrity of the endothelium, and this results in a loss of corneal transparency. Instead of freezing, an alternative method of cryopreservation is vitrification, which avoids damage associated with ice formation. Vitrification at practicable cooling rates, however, requires exposure of tissues to very high concentrations of cryoprotectants, and this can cause damage through chemical toxicity and osmotic stress. The effects of a vitrification solution (VS1) containing 2.62 mol/liter (20.5%, w/v) dimethyl sulfoxide, 2.62 mol/liter (15.5%, w/v) acetamide, 1.32 mol/liter (10%, w/v) propane-1,2-diol, and 6% (w/v) polyethylene glycol were studied on corneal endothelium. Endothelial function was assessed by monitoring corneal thickness during 6 hr of perfusion at 35 degrees C with a Ringer solution supplemented with glutathione and adenosine. Various dilutions of the vitrification solution were introduced and removed in a stepwise manner to mitigate osmotic stress. Survival of endothelium after exposure to VS1 or a solution containing 90% of the cryoprotectant concentrations in VS1 (90% VS1) was dependent on the duration of exposure, the temperature of exposure, and the dilution protocol. The basic dilution protocol was performed at 25 degrees C: corneas were transferred from 90% VS1 or VS1 into 50% VS1 for 15 min, followed by 25% VS1 for 15 min and finally into isosmotic Ringer solution. Using this protocol, corneal endothelium survived exposure to 90% VS1 for 15 min at -5 degrees C, but 5 min in VS1 at -5 degrees C was harmful and resulted in some very large and misshapen endothelial cells. This damage was not ameliorated by using a sucrose dilution technique; but endothelial function was improved when the temperature of exposure to VS1 was reduced from -5 to -10 degrees C. Exposure to VS1 for 5 min at -5 degrees C was well tolerated, however, when the temperature of the first dilution step into 50% VS1 was reduced from 25 to 0 degree C. The large, misshapen cells were not observed under these conditions nor after exposure to VS1 at -10 degrees C. These results suggested that damage was the result of cryoprotectant toxicity rather than osmotic stress. Thus, corneal endothelium survived exposure to two solutions of cryoprotectants, namely, 90% VS1 and VS1, that were sufficiently concentrated to vitrify. Whether corneas can be cooled fast enough in these solutions to achieve vitrification and warmed fast enough to avoid devitrification remains to be determined. 相似文献