首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of DNA topoisomerase I (Top1), an enzyme that regulates DNA topology, is impacted by DNA structure alterations and by the anticancer alkaloid camptothecin (CPT). Here, we evaluated the effect of the acetaldehyde-derived DNA adduct, N2-ethyl-2′-deoxyguanosine (N2-ethyl-dG), on human Top1 nicking and closing activities. Using purified recombinant Top1, we show that Top1 nicking-closing activity remains unaffected in N2-ethyl-dG adducted oligonucleotides. However, the N2-ethyl-dG adduct enhanced CPT-induced Top1–DNA cleavage complexes depending on the relative position of the N2-ethyl-dG adduct with respect to the Top1 cleavage site. The Top1-mediated DNA religation (closing) was selectively inhibited when the N2-ethyl-dG adduct was present immediately 3′ from the Top1 site (position +1). In addition, when the N2-ethyl-dG adduct was located at the −5 position, CPT enhanced cleavage at an alternate Top1 cleavage site immediately adjacent to the adduct, which was then at position +1 relative to this new alternate Top1 site. Modeling studies suggest that the ethyl group on the N2-ethyl-dG adduct located at the 5′ end of a Top1 site (position +1) sterically blocks the dissociation of CPT from the Top1–DNA complex, thereby inhibiting further the religation (closing) reaction.  相似文献   

2.
Acetaldehyde, a major metabolite of ethanol, reacts with dG residues in DNA, resulting in the formation of the N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG) adduct. This adduct has been detected in lymphocyte DNA of alcohol abusers. To explore the miscoding property of the N(2)-Et-dG DNA adduct, phosphoramidite chemical synthesis was used to prepare site-specifically modified oligodeoxynucleotides containing a single N(2)-Et-dG. These N(2)-Et-dG-modified oligodeoxynucleotides were used as templates for primer extension reactions catalyzed by the 3' --> 5' exonuclease-free (exo(-)) Klenow fragment of Escherichia coli DNA polymerase I. The primer extension was retarded one base prior to the N(2)-Et-dG lesion and opposite the lesion; however, when the enzyme was incubated for a longer time or with increased amounts of this enzyme, full extension occurred. Quantitative analysis of the fully extended products showed the preferential incorporation of dGMP and dCMP opposite the N(2)-Et-dG lesion, accompanied by a small amounts of dAMP and dTMP incorporation and one- and two-base deletions. Steady-state kinetic studies were also performed to determine the frequency of nucleotide insertion opposite the N(2)-Et-dG lesion and chain extension from the 3' terminus from the dN.N(2)-Et-dG (N is C, A, G, or T) pairs. These results indicate that the N(2)-Et-dG DNA adduct may generate G --> C transversions in living cells. Such a mutational spectrum has not been detected with other methylated dG adducts, including 8-methyl-2'-deoxyguanosine, O(6)-methyl-2'-deoxyguanosine, and N(2)-methyl-2'-deoxyguanosine. In addition, N(2)-ethyl-2'-deoxyguanosine triphosphate (N(2)-Et-dGTP) was efficiently incorporated opposite a template dC during DNA synthesis catalyzed by the exo(-) Klenow fragment. The utilization of N(2)-Et-dGTP was also determined by steady-state kinetic studies. N(2)-Et-dG DNA adducts are also formed by the incorporation of N(2)-Et-dGTP into DNA and may cause mutations, leading to the development of alcohol- and acetaldehyde-induced human cancers.  相似文献   

3.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

4.
5.
The response of bacteriophage RB69 DNA polymerase to N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP), related nucleotides and non-nucleoside inhibitors was measured and compared to values obtained for the closely related DNA polymerase from bacteriophage T4. Both enzymes showed similar responses to inhibitors in terms of Ki values and the ability to utilize BuPdGTP as a substrate. These results provide the relevance of using the recent crystal structure of RB69 DNA polymerase for analysis of BuPdGTP/B family DNA polymerase interactions.  相似文献   

6.
Treatment with estrogen increases the risk of breast, ovary, and endometrial cancers in women. DNA damage induced by estrogen is thought to be involved in estrogen carcinogenesis. In fact, Y-family human DNA polymerases (pol) eta and kappa, which are highly expressed in the reproductive organs, miscode model estrogen-derived DNA adducts during DNA synthesis. Since the estrogen-DNA adducts are a mixture of 6alpha- and 6beta-diastereoisomers of dG-N(2)-6-estrogen or dA-N(6)-6-estrogen, the stereochemistry of each isomeric adduct on translesion synthesis catalyzed by DNA pols has not been investigated. We have recently established a phosphoramidite chemical procedure to insert 6alpha- or 6beta-isomeric N(2)-(estradiol-6-yl)-2'-deoxyguanosine (dG-N(2)-6-E(2)) into oligodeoxynucleotides. Using such site-specific modified oligomer as a template, the specificity and frequency of miscoding by dG-N(2)-6alpha-E(2) or dG-N(2)-6beta-E(2) were explored using pol eta and a truncated form of pol kappa (pol kappaDeltaC). Translesion synthesis catalyzed by pol eta bypassed both the 6alpha- and 6beta-isomers of dG-N(2)-6-E(2), with a weak blockage at the adduct site, while translesion synthesis catalyzed by pol kappaDeltaC readily bypassed both isomeric adducts. Quantitative analysis of base substitutions and deletions occurring at the adduct site showed that pol kappaDeltaC was more efficient than pol eta by incorporating dCMP opposite both 6alpha- and 6beta-isomeric dG-N(2)-6-E(2) adducts. The miscoding events occurred more frequently with pol eta, but not with pol kappaDeltaC. Pol eta promoted incorporation of dAMP and dTMP at both the 6alpha- and 6beta-isomeric adducts, generating G --> T transversions and G --> A transitions. One- and two-base deletions were also formed. The 6alpha-isomeric adduct promoted slightly lower frequency of dCMP incorporation and higher frequency of dTMP incorporation and one-base deletions, compared with the 6beta-isomeric adduct. These observations were supported by steady-state kinetic studies. Taken together, the miscoding property of the 6alpha-isomeric dG-N(2)-6-E(2) is likely to be similar to that of the 6beta-isomeric adduct.  相似文献   

7.
Tamae D  Lim P  Wuenschell GE  Termini J 《Biochemistry》2011,50(12):2321-2329
Glycation of biopolymers by glucose-derived α-oxo-aldehydes such as methylglyoxal (MG) is believed to play a major role in the complex pathologies associated with diabetes and metabolic disease. In contrast to the extensive literature detailing the formation and physiological consequences of protein glycation, there is little information about the corresponding phenomenon for DNA. To assess the potential contribution of DNA glycation to genetic instability, we prepared shuttle vectors containing defined levels of the DNA glycation adduct N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG) and transfected them into isogenic human fibroblasts that differed solely in the capacity to conduct nucleotide excision repair (NER). In the NER-compromised fibroblasts, the induced mutation frequencies increased up to 18-fold relative to background over a range of ~10-1400 CEdG adducts/10(5) dG, whereas the same substrates transfected into NER-competent cells induced a response that was 5-fold over background at the highest adduct density. The positive linear correlation (R(2) = 0.998) of mutation frequency with increasing CEdG level in NER-defective cells suggested that NER was the primary if not exclusive mechanism for repair of this adduct in human fibroblasts. Consistent with predictions from biochemical studies using CEdG-substituted oligonucleotides, guanine transversions were the predominant mutation resulting from replication of MG-modified plasmids. At high CEdG levels, significant increases in the number of AT → GC transitions were observed exclusively in NER-competent cells (P < 0.0001). This suggested the involvement of an NER-dependent mutagenic process in response to critical levels of DNA damage, possibly mediated by error-prone Y-family polymerases.  相似文献   

8.
The 4977bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or -- specifically in skin -- external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.  相似文献   

9.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

10.
4-Hydroxy-2-nonenal (HNE), one of the main aldehydic compounds released during lipid peroxidation, has been proposed to react with DNA bases in cells. Several classes of DNA lesions involving addition of either HNE or its 2,3-epoxide (epox-HNE) have been identified. In the present work, HPLC associated with tandem mass spectrometry was used to determine the pattern of HNE-induced DNA lesions. First, adducts were quantified within isolated DNA treated with HNE under peroxidizing conditions. The 1,N2-propano-2'-deoxyguanosine adduct of HNE (HNE-dGuo) was found to be the major lesion under all conditions studied. 1,N6-Ethenoadenine and 1,N2-ethenoguanine together with their (1,2-dihydroxyheptyl)-substituted derivatives, which all arise from the reaction of epox-HNE with DNA, were produced in significantly lower yields, even in the presence of 20 mM H2O2. The pyrimidopurinone malondialdehyde-2'-deoxyguanosine adduct was also found to be produced, although in very low yield. Similar results were obtained in cultured human monocytes incubated with HNE, because the HNE-dGuo adduct represented more than 95% of the overall adducts to DNA. In addition, the former lesion was poorly repaired, in contrast to 1,N2-ethenoguanine and, to a lesser extent, 1,N6-ethenoadenine. Altogether, these results suggest than HNE-dGuo may represent the best biomarker of the genotoxic effects of HNE.  相似文献   

11.
Unscheduled DNA synthesis has been measured in human fibroblasts under conditons of reduced rates of conversion of NAD to poly(ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of UV induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with UV or N-methyl-N′-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.  相似文献   

12.
DNA damage by reactive oxygen species is of special interest in the development of cancer and in aging. The renally excreted amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) is a potential noninvasive marker of oxidative DNA damage. The respiratory chain of mitochondria is one source for the formation of reactive oxygen species. In the present study we investigated in Wistar rats (n = 7; mean body weight at start, 307.4 +/- 11 g) the effect of an increased O(2) consumption, i.e., energy expenditure, due to cold stress on the renally excreted amount of oxo(8)dG. First, the rats were housed for 4 days at 23.5 degrees C (basic period, BP), and then for 6 days at 10 degrees C (cold stress period, CSP), and finally for 3 days at 23.5 degrees C (recovery period, RP). The O(2) consumption (L O(2)/day/kg weight) was significantly (P < 0.0001) on average 50% higher in CSP (69.0 +/- 3.9) than in BP (45.8 +/- 4.8), and similar in BP and RP (44.3 +/- 5.4). The average renal excretion of oxo(8)dG (pmol/day/kg weight) was significantly (P < 0.025) on average 13% higher in CSP (375.5 +/- 27.7) than in BP (333.2 +/- 47. 4) and similar in BP and RP (331.8 +/- 34.3). Maximum increase in oxo(8)dG excretion of on average 17% was on the third to fifth day of the CSP. This study reveals that an increase in O(2) consumption of 50% resulted in a much lower increase in the renal excretion of oxo(8)dG.  相似文献   

13.
Formaldehyde is produced in most living systems and is present in the environment. Evidence that formaldehyde causes cancer in experimental animals infers that it may be a carcinogenic hazard to humans. Formaldehyde reacts with the exocyclic amino group of deoxyguanosine, resulting in the formation of N2-methyl-2′-deoxyguanosine (N2-Me-dG) via reduction of the Schiff base. The same reaction is likely to occur in living cells, because cells contain endogenous reductants such as ascorbic acid and gluthathione. To explore the miscoding properties of formaldehyde-derived DNA adducts a site-specifically modified oligodeoxynucleotide containing a N2-Me-dG was prepared and used as the template in primer extension reactions catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I. The primer extension reaction was slightly stalled one base before the N2-Me-dG lesion, but DNA synthesis past this lesion was readily completed. The fully extended products were analyzed to quantify the miscoding specificities of N2-Me-dG. Preferential incorporation of dCMP, the correct base, opposite the lesion was observed, along with small amounts of misincorporation of dTMP (9.4%). No deletions were detected. Steady-state kinetic studies indicated that the frequency of nucleotide insertion for dTMP was only 1.2 times lower than for dCMP and the frequency of chain extension from the 3′-terminus of a dT:N2-Me-dG pair was only 2.1 times lower than from a dC:N2-Me-dG pair. We conclude that N2-Me-dG is a miscoding lesion capable of generating G→A transition mutations.  相似文献   

14.
Humans are polymorphic at two of the alcohol dehydrogenase (ADH) loci important in ethanol metabolism, ADH2 and ADH3. Although the coding regions of these genes are 94% identical, they produce subunits that differ greatly in kinetic properties in vitro. These differences are likely to be reflected in the pharmacokinetics of alcohol metabolism, but studies have been hampered by the need to use liver biopsy specimens to determine the ADH phenotype. This problem has now been overcome by determining the genotype at these loci using DNA that has been amplified in vitro by the polymerase chain reaction. We report here the identification of all three of the ADH2 alleles and both of the ADH3 alleles. Any pair of ADH2 or ADH3 alleles can be distinguished using allele-specific oligonucleotide probes directed at their single base pair difference. In addition, ADH2(2) can be distinguished from ADH2(1) and ADH2(3) by detecting a new MaeIII site created in the third exon by the single base pair alteration in ADH2(2).  相似文献   

15.
The objective of this study is to investigate if 8-methoxy-psoralen (8-MOP) plus ultraviolet A (UVA) radiation (PUVA) induces oxidative DNA damage. When calf thymus DNA was incubated with 8-MOP and irradiated with UVA (335-400 nm), the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was substantially increased by approximately 6-fold. Formation of 8-OHdG proportionally correlated with both UVA fluence and 8-MOP concentrations. Human epidermoid carcinoma cells were incubated with 10 microg 8-MOP per milliliter, followed by irradiation of 25 kJ/m2 UVA. The level of 8-OHdG increased by nearly 3-fold in PUVA-treated cells compared to 8-MOP and UVA controls. The formation of 8-OHdG correlated with DNA fragmentation as determined by spectrofluorometry. To investigate the reactive oxygen species (ROS) involved in PUVA-induced oxidative DNA damage, less or more specific ROS quenchers were added to DNA solution prior to PUVA treatment. The results showed that only sodium azide and genistein significantly quenched PUVA-induced 8-OHdG, whereas catalase, superoxide dismutase, and mannitol exhibited no effect. The quencher study with cultured cells indicated that N-acetyl-cysteine and genistein protected oxidative DNA damage as well as DNA fragmentation by PUVA treatment. Our studies show that PUVA treatment is able to induce the formation of 8-OHdG in purified DNA and cultured cells and suggest that singlet oxygen is the principle reactive oxygen species involved in oxidative DNA damage by PUVA treatment.  相似文献   

16.
N(2)- (4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N(2)-(4-hydroxyphenyl)-2'-dG (N(2)-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N(2)-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N(2)-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.  相似文献   

17.
The incorporation of 7-deazaguanine modifications into DNA is frequently used to probe protein recognition of H-bonding information in the major groove of DNA. While it is generally assumed that 7-deazaguanine forms a normal Watson–Crick base pair with cytosine, detailed thermodynamic and structural analyses of this modification have not been reported. The replacement of the 7-N atom on guanine with a C–H, alters the electronic properties of the heterocycle and eliminates a major groove cation-binding site that could affect the organization of salts and water in the major groove. We report herein the characterization of synthetic DNA oligomers containing 7-deazaguanine using a variety of complementary approaches: UV thermal melting, differential scanning calorimetry (DSC), circular dichroism (CD), chemical probing and NMR. The results indicate that the incorporation of a 7-deazaguanine modification has a significant effect on the dynamic structure of the DNA at the flanking residue. This appears to be mediated by changes in hydration and cation organization.  相似文献   

18.
Previous studies showed that natural human liver alcohol dehydrogenase gamma exhibits negative cooperativity (substrate activation) with ethanol. Studies with the recombinant gamma(2) isoenzyme now confirm that observation and show that the saturation kinetics with other alcohols are also nonhyperbolic, whereas the kinetics for reactions with NAD(+), NADH, and acetaldehyde are hyperbolic. The substrate activation with ethanol and 1-butanol are explained by an ordered mechanism with an abortive enzyme-NADH-alcohol complex that releases NADH more rapidly than does the enzyme-NADH complex. In contrast, high concentrations of cyclohexanol produce noncompetitive substrate inhibition against varied concentrations of NAD(+) and decrease the maximum velocity to 25% of the value that is observed at optimal concentrations of cyclohexanol. Transient kinetics experiments show that cyclohexanol inhibition is due to a slower rate of dissociation of NADH from the abortive enzyme-NADH-cyclohexanol complex than from the enzyme-NADH complex. Fluorescence quenching experiments confirm that the alcohols bind to the enzyme-NADH complex. The nonhyperbolic saturation kinetics for oxidation of ethanol, cyclohexanol, and 1-butanol are quantitatively explained with the abortive complex mechanism. Physiologically relevant concentrations of ethanol would be oxidized predominantly by the abortive complex pathway.  相似文献   

19.
20.
The radiation chemistry of the dinucleoside monophosphate d(CpG) and its sequence isomer, d(GpC), has been examined in aqueous solutions saturated with either N2O or O2. The products were isolated using HPLC, and the major products were identified using proton NMR spectroscopy and mass spectrometry. The major products include 5,6-dihydroxy-5,6-dihydrouracil (glycol) derivatives, 5- and 6-hydroxycytosine substitution products, 1-carbamoyl-2-oxo-4,5-dihydroxyimidazolidine products, and the 8-hydroxyguanine substitution product. Both trans stereoisomers of the imidazolidine derivatives are obtained from d(CpG) as well as from its sequence isomer. These are prominent products when the irradiation is carried out in the presence of oxygen, but they are not observed in the absence of oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号