首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that Epstein-Barr virus (EBV) might suppress antibody maturation either by facilitating bypass of the germinal center reaction or by inhibiting hypermutation directly. However, by infecting the Burkitt's lymphoma (BL) cell line Ramos, which hypermutates constitutively and can be considered a transformed analogue of a germinal center B cell, with EBV as well as by transfecting it with selected EBV latency genes, we demonstrate that expression of EBV gene products does not lead to an inhibition of hypermutation. Moreover, we have identified two natural EBV-positive BL cell lines (ELI-BL and BL16) that hypermutate constitutively. Thus, contrary to expectations, EBV gene products do not appear to affect somatic hypermutation.  相似文献   

2.
Seki M  Gearhart PJ  Wood RD 《EMBO reports》2005,6(12):1143-1148
Somatic hypermutation of immunoglobulin variable genes, which increases antibody diversity, is initiated by the activation-induced cytosine deaminase (AID) protein. The current DNA-deamination model posits that AID deaminates cytosine to uracil in DNA, and that mutations are generated by DNA polymerases during replication or repair of the uracil residue. Mutations could arise as follows: by DNA replicating past the uracil; by removing the uracil with a uracil glycosylase and replicating past the resulting abasic site with a low-fidelity polymerase; or by repairing the uracil and synthesizing a DNA-repair patch downstream using a low-fidelity polymerase. In this review, we summarize the biochemical properties of specialized DNA polymerases in mammalian cells and discuss their participation in the mechanisms of hypermutation. Many recent studies have examined mice deficient in the genes that encode various DNA polymerases, and have shown that DNA polymerase H (POLH) contributes to hypermutation, whereas POLI, POLK and several other enzymes do not have major roles. The low-fidelity enzyme POLQ has been proposed as another candidate polymerase because it can efficiently bypass abasic sites and recent evidence indicates that it might participate in hypermutation.  相似文献   

3.
Somatic hypermutation of rearranged Ig V region gene plays a major role in generating antibody diversity. Recently, V mutation has been established as a major mechanism of tumor escape from anti-Id immunotherapy. We cloned and sequenced the expressed Ig H and L chain V regions from a case of B acute lymphoblastic leukemia in order to evaluate B cell stages associated with V region mutation, and to determine which tumors would be better suited to Id directed immunotherapy. A consensus VH and V lambda sequence representing tumor at diagnosis was obtained by conventional cDNA cloning in lambda gt10 from a heterohybridoma. Primers which flanked both V regions were used in a modified polymerase chain reaction to generate multiple independent sequences from tumor cells harvested at relapse. In order to exclude mutations due to infidelity of the amplification procedure, single cDNA templates of known sequence were also amplified. The polymerase chain reaction proved to be an effective procedure to obtain multiple clones, but replication in M13 was associated with a low rate of base misincorporation. The results indicate that there is no evidence for biologically significant ongoing mutation in this t(8;14) B cell tumor when comparing sequences at diagnosis and relapse. Thus, V somatic mutation may be restricted to a discrete B cell stage whose malignant counterpart is follicular lymphoma.  相似文献   

4.
Targeting of somatic hypermutation   总被引:1,自引:0,他引:1  
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.  相似文献   

5.
Somatic hypermutation (SHM) diversifies the genes that encode immunoglobulin variable regions in antigen-activated germinal centre B lymphocytes. Available evidence strongly suggests that DNA deamination potentiates phase I SHM and subsequently triggers phase II SHM. A concise review of this evidence is followed by a detailed critique of two possible models which suggest that polymerase-eta potentiates phase II SHM via either its DNA-dependent or its RNA-dependent DNA synthetic activity. Quantitative analysis, in the context of extant data that define the features of SHM, favours the RNA-dependent mechanism.  相似文献   

6.
The hypermutation cascade in Ig V genes can be initiated by deamination of cytosine in DNA to uracil by activation-induced cytosine deaminase and its removal by uracil-DNA glycosylase. To determine whether damage to guanine also contributes to hypermutation, we examined the glycosylase that removes oxidized guanine from DNA, 8-hydroxyguanine-DNA glycosylase (OGG1). OGG1 has been reported to be overexpressed in human B cells from germinal centers, where mutation occurs, and could be involved in initiating Ab diversity by removing modified guanines. In this study, mice deficient in Ogg1 were immunized, and V genes from the H and kappa L chain loci were sequenced. Both the frequency of mutation and the spectra of nucleotide substitutions were similar in ogg1(-/-) and Ogg1(+/+) clones. More importantly, there was no significant increase in G:C to T:A transversions in the ogg1(-/-) clones, which would be expected if 8-hydroxyguanine remained in the DNA. Furthermore, Ogg1 was not up-regulated in murine B cells from germinal centers. These findings show that hypermutation is unaffected in the absence of Ogg1 activity and indicate that 8-hydroxyguanine lesions most likely do not cause V gene mutations.  相似文献   

7.
8.
9.
DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.  相似文献   

10.
11.
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).  相似文献   

12.
The control of seed germination under environmental conditions, where plants will be grown, is important for the adaptability of plants. Low-temperature is one of the most common environmental stress factors that affect plant growth and development and places a major limit on crop productivity in cultivated areas. Previously, qLTG3-1, a major quantitative trait locus controlling low-temperature tolerance at the germination stage in rice (called low-temperature germinability) was identified, which encodes a protein of unknown function. To identify genes targeted by qLTG3-1, a genome-wide expression profiling analysis using the 44 K Rice Oligo microarray was performed. Because the expression of qLTG3-1 was dramatically increased at 1 day after incubation, the expression profiles at this time were compared between Hayamasari, which has a loss-of-function qLTG3-1 allele, and a near isogenic line with a functional allele. A total of 4,587 genes showed significant differences between their expression levels in the two lines. Most of these genes might be involved in the process of seed germination itself, and then a focus was made on qLTG3-1 dependently induced or suppressed genes, defined as ‘qLTG3-1 dependent’ genes. Twenty-nine ‘qLTG3-1 dependent’ genes with diverse functions were categorized, implying that disruption of cellular homeostasis leads to a wide range of metabolic alterations and diverse cross-talk between various signaling pathways. In particular, genes involved in defense responses were up-regulated by qLTG3-1, indicating that qLTG3-1 expression is required for the expression of defense response genes in low-temperature germinability in rice.  相似文献   

13.
Improving antibody affinity by mimicking somatic hypermutation in vitro.   总被引:15,自引:0,他引:15  
In vivo affinity maturation of antibodies involves mutation of hot spots in the DNA encoding the variable regions. We have used this information to develop a strategy to improve antibody affinity in vitro using phage display technology. In our experiment with the antimesothelin scFv, SS(scFv), we identified DNA sequences in the variable regions that are naturally prone to hypermutations, selected a few hot spots encoding nonconserved amino acids, and introduced random mutations to make libraries with a size requirement between 10(3) and 10(4) independent clones. Panning of the hot spot libraries yielded several mutants with a 15- to 55-fold increase in affinity compared with a single clone with a fourfold increased affinity from a library in which mutagenesis was done outside the hot spots. The strategy should be generally applicable for the rapid isolation of higher-affinity mutants of Fvs, Fabs, and other recombinant antibodies from antibody phage libraries that are small in size.  相似文献   

14.
Using the polymerase chain reaction we examined for specific Ig kappa-L chain V region gene (V kappa gene) rearrangement in small lymphocytic non-Hodgkin's lymphomas that express Ig bearing a major kappa-L chain associated cross-reactive Id, designated 17.109. Previously, we identified the 17.109-cross-reactive Id in chronic lymphocytic leukemia as a serologic marker for expression of a highly conserved V kappa gene, designated Humkv325. Using sense-strand oligonucleotides specific for the 5'-end of this V kappa gene and antisense oligonucleotide specific for a J kappa region consensus sequence, we could amplify specifically Humkv325 when juxtaposed with J kappa through Ig gene rearrangement. This allowed us to amplify rearranged V kappa genes from DNA isolated from minute amounts of lymphoma biopsy material for molecular analyses. Our studies demonstrate that 17.109-reactive SL NHL, with or without associated CLL, rearrange, and presumably express, Humkv325 without substantial somatic diversification. Our data suggest that malignant B cells in SL NHL, in contrast to NHL of follicular center cell origin, may express immunoglobulin variable region genes with little or no somatic hypermutation.  相似文献   

15.
Gene conversion has played a major role in molding eukaryotic genomes, and this same mechanism mediates targeted sequence diversification of a variety of genes in response to developmental or environmental stimuli. Here I review data indicating that gene conversion may also be the molecular mechanism of somatic hypermutation at the mammalian immunoglobulin loci.  相似文献   

16.
17.
Somatic hypermutation (SHM) and class switch recombination (CSR) allow B cells to make high affinity antibodies of various isotypes. Both processes are initiated by activation-induced cytidine deaminase (AID) to generate dG:dU mismatches in the immunoglobulin genes that are resolved differently in SHM and CSR to introduce point mutations and recombination, respectively. The MutL homolog MLH3 has been implicated in meiosis and DNA mismatch repair (MMR). Since it interacts with MLH1, which plays a role in SHM and CSR, we examined these processes in Mlh3-deficient mice. Although deficiencies in other MMR proteins result in defects in SHM, Mlh3(-/-) mice exhibited an increased frequency of mutations in their immunoglobulin variable regions, compared to wild type littermates. Alterations of mutation spectra were observed in the Jh4 flanking region in Mlh3(-/-) mice. Nevertheless, Mlh3(-/-) mice were able to switch to IgG3 or IgG1 with similar frequencies to control mice. This is the first instance where a loss of a DNA repair protein has a positive impact on the rate of SHM, suggesting that Mlh3 normally inhibits the accumulation of mutations in SHM.  相似文献   

18.
19.
20.
Brca1 in immunoglobulin gene conversion and somatic hypermutation   总被引:1,自引:0,他引:1  
Defects in Brca1 confer susceptibility to breast cancer and genomic instability indicative of aberrant repair of DNA breaks. Brca1 was previously implicated in the homologous recombination pathway via effects on the assembly of recombinase Rad51. Activation-induced cytidine deaminase (AID) deaminates C to U in B lymphocyte immunoglobulin (Ig) DNA to initiate programmed DNA breaks. Subsequent uracil-glycosylase mediated U removal, and perhaps further processing, leads to four known classes of mutation: Ig class switch recombination that results in a region-specific genomic deletion, Ig somatic hypermutation that introduces point mutations in Ig V-regions, Ig gene conversion in vertebrates that possess Ig pseudo-V genes, and translocations common to B cell lymphomas. We tested the involvement of Brca1 in AID-dependent Ig diversification in chicken DT40 cells. The DT40 cell line diversifies IgVlambda mainly by gene conversion, and less so by point mutation. Brca1-deficiency caused a shift in Vlambda diversification, significantly reducing the proportion of gene conversions relative to point mutations. Thus, Brca1 regulates AID-dependent DNA lesion repair. Interestingly, while Brca1 is required to recruit ubiquitinated FancD2 to DNA damage, the phenotype of Brca1-deficient DT40 differs from the one of FancD2-deficient DT40, in which both gene conversion and non-templated mutations are impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号