首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Symmetry has been difficult to observe in nonhumans mainly because they seem to perceive stimuli as a conjunction of visual, spatial, and temporal characteristics. When such characteristics are controlled, symmetry does emerge in nonhumans (cf. [Frank and Wasserman, 2005] and [Urcuioli, 2008]). Recently, however, Garcia and Benjumea (2006) reported symmetry in pigeons without controlling for temporal order. The present experiments explored their paradigm and the ingredients for their success. Experiments 1 and 2 sought to replicate their findings and to examine different symmetry measures. We found evidence for symmetry using non-reinforced choice probe tests, a latency-based test, and a reinforced consistent versus inconsistent manipulation. Experiment 3 adapted their procedure to successive matching to evaluate their contention that a choice between at least two comparisons is necessary for symmetry to emerge. Contrary to their prediction, symmetry was observed following go/no-go training. Our results confirm Garcia and Benjumea's findings, extend them to other test and training procedures, and once again demonstrate symmetry in the absence of language.  相似文献   

2.
3.
4.
The stationary distribution for the asymmetrical form of the SAS-CFF model of selection in a random environment is presented. Also presented are the conditions for the stable coexistence of K alleles. These conditions are the same as the conditions obtained from the classical constant-fitness model with the formal substitution of geometric mean fitnesses for the constant fitnesses of the classical model. Two examples are explored. In the “equally spaced” example, increases in the degree of asymmetry raise the homozygosity, which is accompanied by loss of alleles from the population. In the “best allele” example, increases in the degree of asymmetry raise the homozygosity without the loss of alleles. In both cases the frequency spectra are altered by the changes in the degree of asymmetry.  相似文献   

5.
We developed a method of causing strong ischemic insult only in vulnerable nerve cells, such as hippocampal cells, without causing hemiplegia or difficulty in moving, by repeating cerebral ischemia for a brief time with a short interval periods. The rats subjected to 10 min of cerebral ischemia exhibited no impairment of spatial cognition at the test trial 7 days after final reperfusion. However, when the 10 min ischemia was repeated twice with a 1 hr interval, the rats exhibited a significant decrease in number of correct choices and increase in number of errors. Three times of repeated cerebral ischemia also induced a significant decrease in the number of correct choices and increase in the number of errors, but there were some rats showing motor difficulty. Cell death was typically observed in the CA1 layer of the hippocampus of rats subjected twice to 10 min of cerebral ischemia. Hippocampal and cortical acetylcholine (ACh) release weas transiently increased during the first and second 10 minutes of ischemia and normalized immediately after recirculation; thereafter, ACh release from these areas gradually decreased and showed a significantly low level at 7 days after recirculation. These results suggest that the repeated cerebral ischemia-induced impairment of spatial memory may be due to the dysfunction of hippocampal and cortical ACh systems and hippocampal cell death. The repeated cerebral ischemia model which produces cell death and ACh dysfunction in the hippocampus is thought to be useful for evaluating new drugs for the treatment of cerebrovascular dementia.  相似文献   

6.
In rodents, neuronal plasticity decreases and spatial learning and working memory deficits increase upon aging. Several authors have shown that rats reared in enriched environments have better cognitive performance in association with increased neuronal plasticity than animals reared in standard environments. We hypothesized that enriched environment could preserve animals from the age-associated neurological impairments, mainly through NO-dependent mechanisms of induction of neuronal plasticity. We present evidence that 27 months old rats from an enriched environment show a better performance in spatial working memory than standard reared rats of the same age. Both mtNOS and cytosolic nNOS activities were found significantly increased (73% and 155%, respectively) in female rats from enriched environment as compared with control animals kept in a standard environment. The enzymatic activity of complex I was 80% increased in rats from enriched environment as compared with control rats. We conclude that an extensively enriched environment prevents old rats from the aging-associated impairment of spatial cognition, synaptic plasticity and nitric oxide production.  相似文献   

7.
Evidence of sex differences in spatial cognition have been reported in a wide range of vertebrate species. Several evolutionary hypotheses have been proposed to explain these differences. The one best supported is the range size hypothesis that links spatial ability to range size. Our study aimed to determine whether male cuttlefish (Sepia officinalis; cephalopod mollusc) range over a larger area than females and whether this difference is associated with a cognitive dimorphism in orientation abilities. First, we assessed the distance travelled by sexually immature and mature cuttlefish of both sexes when placed in an open field (test 1). Second, cuttlefish were trained to solve a spatial task in a T-maze, and the spatial strategy preferentially used (right/left turn or visual cues) was determined (test 2). Our results showed that sexually mature males travelled a longer distance in test 1, and were more likely to use visual cues to orient in test 2, compared with the other three groups. This paper demonstrates for the first time a cognitive dimorphism between sexes in an invertebrate. The data conform to the predictions of the range size hypothesis. Comparative studies with other invertebrate species might lead to a better understanding of the evolution of cognitive dimorphism.  相似文献   

8.
Comparison of rats behaviour with different preliminary experience in elaboration of the strategy of return to place of reinforcement was conducted. Significant differences in the number of selective replacements to the place of reinforcement in previous tests in experienced, inexperienced and naive rats were found. It was proved that decisive role in the appearance of the found differences played gained experience and the process of engram extraction from memory. Inhibition of search in naive rats and ability to selective use of strategies corresponding to situation in the experienced ones in condition of stress of permanent changes were shown.  相似文献   

9.
10.
Spatial tasks in rodents are commonly used to study general mechanisms of cognition. We review two groups of novel spatial tasks for rodents and discuss how they can extend our understanding of mechanisms of spatial cognition. The first group represents spatial tasks in which the subject does not locomote. Locomotion influences neural activity in brain structures important for spatial cognition. The tasks belonging to the first group make it possible to study cognitive processes without the interfering impact of locomotion. The second group represents tasks in which the subject approaches or avoids a moving object. Despite this topic is intensively studied in various animal species, little attention has been paid to it in rodents. Both groups of the tasks are powerful tools for addressing novel questions about rodent cognition.  相似文献   

11.
The fetal and even the young brain possesses a considerable degree of plasticity. The plasticity and rate of neurogenesis in the adult brain is much less pronounced. The present study was conducted to investigate whether housing conditions affect neurogenesis, learning, and memory in adult rats. Three‐month‐old rats housed either in isolation or in an enriched environment were injected intraperitoneally with bromodeoxyuridine (BrdU) to detect proliferation among progenitor cells and to follow their fate in the dentate gyrus. The rats were sacrificed either 1 day or 4 weeks after BrdU injections. This experimental paradigm allows for discrimination between proliferative effects and survival effects on the newborn progenitors elicited by different housing conditions. The number of newborn cells in the dentate gyrus was not altered 1 day after BrdU injections. In contrast, the number of surviving progenitors 1 month after BrdU injections was markedly increased in animals housed in an enriched environment. The relative ratio of neurogenesis and gliogenesis was not affected by environmental conditions, as estimated by double‐labeling immunofluorescence staining with antibodies against BrdU and either the neuronal marker calbindin D28k or the glial marker GFAp, resulting in a net increase in neurogenesis in animals housed in an enriched environment. Furthermore, we show that adult rats housed in an enriched environment show improved performance in a spatial learning test. The results suggest that environmental cues can enhance neurogenesis in the adult hippocampal region, which is associated with improved spatial memory. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 569–578, 1999  相似文献   

12.
Vukov J  Santos FC  Pacheco JM 《PloS one》2011,6(3):e17939

Background

From the simplest living organisms to human societies, cooperation among individuals emerges as a paradox difficult to explain and describe mathematically, although very often observed in reality. Evolutionary game theory offers an excellent toolbar to investigate this issue. Spatial structure has been one of the first mechanisms promoting cooperation; however, alone it only opens a narrow window of viability.

Methodology/Principal Findings

Here we equip individuals with incipient cognitive abilities, and investigate the evolution of cooperation in a spatial world where retaliation, forgiveness, treason and mutualism may coexist, as individuals engage in Prisoner''s Dilemma games. In the model, individuals are able to distinguish their partners and act towards them based on previous interactions. We show how the simplest level of cognition, alone, can lead to the emergence of cooperation.

Conclusions/Significance

Despite the incipient nature of the individuals'' cognitive abilities, cooperation emerges for unprecedented values of the temptation to cheat, being also robust to invasion by cheaters, errors in decision making and inaccuracy of imitation, features akin to many species, including humans.  相似文献   

13.
Summary We report linkage studies in 18 choroideremia (TCD) families using four closely linked polymorphic markers. Probe pZ11, which is known to be deleted in several unrelated patients with TCD, showed no recombinations (z max 15.63 at = 0.00). In contrast, one recombination was observed with DXS367, which is also physically very close to TCD. Loci DXS95 and DXYS69 each showed more than one recombination with TCD. Moreover, these analyses revealed a double crossover between TCD and DXYS1, changing the previously reported very close linkage to a recombination fraction of 0.04 with a lod score of 9.93. Multipoint linkage analysis placed TCD proximal to DXS95-DXYS69 and very close to DXS367-pZ11 with almost identical multipoint lod score maxima either proximal to DXS367 (z max= 23.43) or proximal to pZ11 (z max=23.36). These results provide a refined linkage map around TCD and will also be useful in DNA diagnostics of the disease.  相似文献   

14.
Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.  相似文献   

15.
Studies examining the roles of estrogens and progestins on spatial cognition have been highly contradictory. To determine if the hormonal environment of pregnancy affects spatial cognition, pregnant (n = 7) and virgin (n = 7) Hooded Long-Evans rats were tested in a Morris water maze throughout the 3 weeks of pregnancy and the second week postpartum. Latency to platform, path length, swim velocity, and time in quadrant were compared over trial-days. To compare water maze performance with changes in hormone levels, serum concentrations of estradiol and progesterone were measured on the first, third, and fifth days of testing during the third week of pregnancy. Subjects learned to find the platform as indicated by decreased time and distance to platform over each trial-week and increased time spent in the quadrant where the platform had been located the previous week. However, there were no differences between treatment groups on time or distance to platform over trial-days. Swim velocity did not differ between or within groups over the 4 weeks of testing. Although primigravid and virgin females were similar in their abilities to learn the novel location of a submerged platform and return to it over time, pregnant animals demonstrated less perseveration to previously learned information and were quicker to locate the platform when it moved to a new location. Thus, reproductive status did not affect reference memory but enhanced working memory in the Morris water maze.  相似文献   

16.
The fetal and even the young brain possesses a considerable degree of plasticity. The plasticity and rate of neurogenesis in the adult brain is much less pronounced. The present study was conducted to investigate whether housing conditions affect neurogenesis, learning, and memory in adult rats. Three-month-old rats housed either in isolation or in an enriched environment were injected intraperitoneally with bromodeoxyuridine (BrdU) to detect proliferation among progenitor cells and to follow their fate in the dentate gyrus. The rats were sacrificed either 1 day or 4 weeks after BrdU injections. This experimental paradigm allows for discrimination between proliferative effects and survival effects on the newborn progenitors elicited by different housing conditions. The number of newborn cells in the dentate gyrus was not altered 1 day after BrdU injections. In contrast, the number of surviving progenitors 1 month after BrdU injections was markedly increased in animals housed in an enriched environment. The relative ratio of neurogenesis and gliogenesis was not affected by environmental conditions, as estimated by double-labeling immunofluorescence staining with antibodies against BrdU and either the neuronal marker calbindin D28k or the glial marker GFAp, resulting in a net increase in neurogenesis in animals housed in an enriched environment. Furthermore, we show that adult rats housed in an enriched environment show improved performance in a spatial learning test. The results suggest that environmental cues can enhance neurogenesis in the adult hippocampal region, which is associated with improved spatial memory.  相似文献   

17.
18.
Summary. Epilepsy research relies heavily on animal models that mimic some, or all, of the clinical symptoms observed. We have previously described a new developmental rat model of epilepsy that demonstrates both behavioural seizures and changes in hippocampal morphology. In the current study we investigated whether these rats also show changes in cognitive performance as measured using the Morris water maze task, and emotionality as measured using the Elevated plus maze task. In the water maze, significant differences between male and female rats were found in several performance variables regardless of treatment. In addition, female but not male rats, treated neonatally with domoic acid had significant impairments in learning new platform locations in the water maze. In the elevated plus maze, a significant proportion of female rats spent more time in the open arm of the maze following prior exposure to the maze whereas this effect was not seen in male rats. We conclude that perinatal treatment with low doses of domoic acid results in significant gender-based changes in cognition and emotionality in adult rats.  相似文献   

19.
Prenatal stress (PS) can cause long-term hippocampus alternations in structure and plasticity in adult offspring. Enriched environment (EE) has an effect in rescuing a variety of neurological disorders. Pregnant dams were left undisturbed (prenatal control, PC) or restrained 6h per day from days 14 to 21 (prenatal stress, PS). Control and prenatal stressed offspring rats were subjected to a standard rearing environment (SE) or an EE on postnatal days 22-120 (PC/SE PC/EE, PS/SE, and PS/EE; n=5, each group). At ~4 months of age, all rats underwent Morris water maze test and brain MRI examination. Hippocampi were then dissected for biochemical analyses, including, Western blot for NMDA receptor (NR) subunits and synaptophysin and RT-PCR forβ1 integrin and tissue-plasminogen activator (t-PA). MRI showed all 5 rats in the PS/SE group and 5 in the PS/EE group exhibited increased signals in bilateral hippocampus and increased T2 time in the PS/SE group. Exposure to EE treatment on postnatal days 22-120 counteracted the deficit in spatial memory and increased NR1 protein expression, but it did not affect the rate of high signals and increased T2 time, decreased NR2, synaptophysin, β1 integrin and t-PA mRNA expressions in PS adult offspring. The results of this study indicate PS in rats causes long-term spatial memory deficits and gross hippocampus pathology. Postnatal EE treatment has differential benefits in terms of spatial learning, signaling molecules, and gross hippocampus pathology.  相似文献   

20.
The intensity and spatial representation of electromyographical (EMG) activity were examined to characterize the effects of limb dominance and movement direction upon global synkinesis (GS). Twenty-two healthy young subjects (11 men, 11 women) with a mean age of 24.7 years participated in this study. Three trials of EMG activities from eight primary muscles in the unexercised limb were recorded when a maximal isometric contraction in various directions was performed by the shoulder, elbow, and wrist of the dominant and non-dominant upper limbs. The features of GS, including intensity and spatial representation, were quantified with standardized net excitation levels (SNE) and relative excitation (RE), respectively. Our data indicated that (1) GS intensity was strongly limb-dependent with a larger SNE level arising when target joints of the non-dominant upper limb were active, (2) the GS intensity was more influenced by movement direction of the non-dominant limb than by that of the dominant limb, (3) the gradient change in GS intensity was observed bilaterally with a larger SNE level associated with contralateral movements of a proximal joint than a distal joint, and (4) GS spatial representations of the upper limbs were patterned and symmetrical, but seemly insensitive to movement direction. Laterality in GS intensity and structured GS spatial representation with symmetry could be a consequence of use-dependent hemispheric organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号