首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid diagnostic tests (RDT) are valuable tools that support prudent and timely use of antimalarial drugs, particularly if reliable microscopy is not available. However, the performance and reliability of these tests vary between and within geographical regions. The present study evaluated the performance of routine malaria RDT in Kenyan febrile patients in Busia County, Kenya. A cross sectional study design was employed to recruit febrile patients attending health facilities between August and November 2016. A total of 192 febrile patients who were slide positive and negative were evaluated for their infection status by nested PCR and RDTs (PfHRP2/pLDH). In addition, P. falciparum diversity of the histidine-rich proteins 2 and 3, that influences the RDT test results were determined. All individuals were P. falciparum positive. Among the investigated 192 febrile patients, 76 (40%) were positive by microscopy, 101 (53%) by RDTs and 80 (42%) were PCR positive. The performance of the CareStart? HRP2/pLDH (pf) RDTs was better than microscopy (Sensitivity 94%; Specificity 75%) and Nucleic acid testing (sensitivity 95%, specificity 77%) with high negative predictive values, indicating the suitability of the RDT in routine practice. Specific pfhrp2/pfhrp3 deletions shown to associate with RDT false negativity was not observed. However, high genetic diversity among pfhrp2 gene was observed. Eleven new PfHRP2 and nine PfHRP3 repeats were observed. False positivity by microscopy and under reporting of infections may thus be a barrier in malaria control and elimination programs. The HRP2/pLDH(Pf) based RDT yet demonstrate to be an effective tool for malaria surveillance program.  相似文献   

2.
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest™ Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest™ Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was ≤500 parasites/µl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia ≥100 parasites/µl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest™ Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.  相似文献   

3.
Plasmodium knowlesi has a relatively broad host range extending to humans, in whom it causes zoonotic malaria. Recent studies have shown that human infection with P. knowlesi is widely distributed in forested areas of Southeast Asia. In the present study, we evaluated commercial rapid diagnostic tests (RDTs) for human malaria to assess their reactivity and sensitivity in detecting P. knowlesi parasites using blood samples obtained from infected monkeys. The blood samples were assayed using two commercial RDTs based on immunochromatographic assays: (i) the OptiMAL-IT, designed to detect parasite lactate dehydrogenase (pLDH) of both P. falciparum and other plasmodia, and (ii) the Entebe Malaria Cassette (MC), designed to detect P. falciparum-specific histidine-rich protein 2 (PfHRP2) and P. vivax-specific pLDH. Interestingly, when the P. knowlesi-infected blood samples were examined with the RDTs, OptiMAL test results were interpreted as falciparum malaria-positive, while Entebe MC test results were interpreted as vivax malaria-positive. The sensitivities of both tests in detecting P. knowlesi parasite were similar to those for P. falciparum and higher than P. vivax. Thus, commercial RDTs based on detection of pLDH should be used with great caution, and should not replace conventional microscopy in the diagnosis of suspected cases of P. knowlesi malaria.  相似文献   

4.

Background

Despite the benefits of malaria diagnosis, most presumed malaria episodes are never tested. A primary reason is the absence of diagnostic tests in retail establishments, where many patients seek care. Malaria rapid diagnostic tests (RDTs) in drug shops hold promise for guiding appropriate treatment. However, retail providers generally lack awareness of RDTs and training to administer them. Further, unsubsidized RDTs may be unaffordable to patients and unattractive to retailers. This paper reports results from an intervention study testing the feasibility of RDT distribution in Ugandan drug shops.

Methods and Findings

92 drug shops in 58 villages were offered subsidized RDTs for sale after completing training. Data on RDT purchases, storage, administration and disposal were collected, and samples were sent for quality testing. Household surveys were conducted to capture treatment outcomes. Estimated daily RDT sales varied substantially across shops, from zero to 8.46 RDTs per days. Overall compliance with storage, treatment and disposal guidelines was excellent. All RDTs (100%) collected from shops passed quality testing. The median price charged for RDTs was 1000USH ($0.40), corresponding to a 100% markup, and the same price as blood slides in local health clinics. RDTs affected treatment decisions. RDT-positive patients were 23 percentage points more likely to buy Artemisinin Combination Therapies (ACTs) (p = .005) and 33.1 percentage points more likely to buy other antimalarials (p<.001) than RDT-negative patients, and were 5.6 percentage points more likely to buy ACTs (p = .05) and 31.4 percentage points more likely to buy other antimalarials (p<.001) than those not tested at all.

Conclusions

Despite some heterogeneity, shops demonstrated a desire to stock RDTs and use them to guide treatment recommendations. Most shops stored, administered and disposed of RDTs properly and charged mark-ups similar to those charged on common medicines. Results from this study suggest that distributing RDTs through the retail sector is feasible and can reduce inappropriate treatment for suspected malaria.  相似文献   

5.

Background

Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes.

Methods

Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru.

Findings

Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes.

Conclusions

This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries.  相似文献   

6.

Background

Laboratory capacity to confirm malaria cases in Tanzania is low and presumptive treatment of malaria is being practiced widely. In malaria endemic areas WHO now recommends systematic laboratory testing when suspecting malaria. Currently, the use of Rapid Diagnostic Tests (RDTs) is recommended for the diagnosis of malaria in lower level peripheral facilities, but not in health centres and hospitals. In this study, the following parameters were evaluated: (1) the quality of routine microscopy, and (2) the effects of RDT implementation on the positivity rate of malaria test results at three levels of the health system in Dar es Salaam, Tanzania.

Methods

During a baseline cross-sectional survey, routine blood slides were randomly picked from 12 urban public health facilities in Dar es Salaam, Tanzania. Sensitivity and specificity of routine slides were assessed against expert microscopy. In March 2007, following training of health workers, RDTs were introduced in nine public health facilities (three hospitals, three health centres and three dispensaries) in a near-to-programmatic way, while three control health facilities continued using microscopy. The monthly malaria positivity rates (PR) recorded in health statistics registers were collected before (routine microscopy) and after (routine RDTs) the intervention in all facilities.

Results

At baseline, 53% of blood slides were reported as positive by the routine laboratories, whereas only 2% were positive by expert microscopy. Sensitivity of routine microscopy was 71.4% and specificity was 47.3%. Positive and negative predictive values were 2.8% and 98.7%, respectively. Median parasitaemia was only three parasites per 200 white blood cells (WBC) by routine microscopy compared to 1226 parasites per 200 WBC by expert microscopy. Before RDT implementation, the mean test positivity rates using routine microscopy were 43% in hospitals, 62% in health centres and 58% in dispensaries. After RDT implementation, mean positivity rates using routine RDTs were 6%, 7% and 8%, respectively. The sensitivity and specificity of RDTs using expert microscopy as reference were 97.0% and 96.8%. The positivity rate of routine microscopy remained the same in the three control facilities: 71% before versus 72% after. Two cross-sectional health facility surveys confirmed that the parasite rate in febrile patients was low in Dar es Salaam during both the rainy season (13.6%) and the dry season (3.3%).

Conclusions

The quality of routine microscopy was poor in all health facilities, regardless of their level. Over-diagnosis was massive, with many false positive results reported as very low parasitaemia (1 to 5 parasites per 200 WBC). RDTs should replace microscopy as first-line diagnostic tool for malaria in all settings, especially in hospitals where the potential for saving lives is greatest.
  相似文献   

7.

Background

In endemic settings, diagnosis of malaria increasingly relies on the use of rapid diagnostic tests (RDTs). False positivity of such RDTs is poorly documented, although it is especially relevant in those infections that resemble malaria, such as human African trypanosomiasis (HAT). We therefore examined specificity of malaria RDT products among patients infected with Trypanosoma brucei gambiense.

Methodology/Principal Findings

Blood samples of 117 HAT patients and 117 matched non-HAT controls were prospectively collected in the Democratic Republic of the Congo. Reference malaria diagnosis was based on real-time PCR. Ten commonly used malaria RDT products were assessed including three two-band and seven three-band products, targeting HRP-2, Pf-pLDH and/or pan-pLDH antigens. Rheumatoid factor was determined in PCR negative subjects. Specificity of the 10 malaria RDT products varied between 79.5 and 100% in HAT-negative controls and between 11.3 and 98.8% in HAT patients. For seven RDT products, specificity was significantly lower in HAT patients compared to controls. False positive reactions in HAT were mainly observed for pan-pLDH test lines (specificities between 13.8 and 97.5%), but also occurred frequently for the HRP-2 test line (specificities between 67.9 and 98.8%). The Pf-pLDH test line was not affected by false-positive lines in HAT patients (specificities between 97.5 and 100%). False positivity was not associated to rheumatoid factor, detected in 7.6% of controls and 1.2% of HAT patients.

Conclusions/Significance

Specificity of some malaria RDT products in HAT was surprisingly low, and constitutes a risk for misdiagnosis of a fatal but treatable infection. Our results show the importance to assess RDT specificity in non-targeted infections when evaluating diagnostic tests.  相似文献   

8.
Rapid diagnostic tests (RDTs) based on immunochromatographic detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) have been frequently used for malaria diagnosis. The HRP2-based RDTs are highly sensitive and easy to use; however, their sensitivity may be low in detecting P. falciparum strains carrying deletion of the pfhrp2 and pfhrp3 genes encoding HRP2 and HRP3, respectively. The automated hematology analyzer XN-31, developed by Sysmex (Kobe, Japan) to aid in malaria diagnosis, has higher sensitivity than RDTs owing to a unique automated nucleic acid staining technology that has shown great potential in clinical settings. In this study, we compared the performance of the XN-31 analyzer and two RDTs to detect pfhrp2- and/or pfhrp3-deleted parasites cultured in vitro. The analyses showed that the analyzer was not only as sensitive to pfhrp2- and/or pfhrp3-deleted strains as it was to the wild-type strain but also had higher sensitivity than the RDTs. These results suggested that the XN-31 analyzer is useful for rapid and reliable detection of pfhrp2- and/or pfhrp3-deleted parasites in clinical settings.  相似文献   

9.

Background

Within the context of increasing antimalarial costs and or decreasing malaria transmission, the importance of limiting antimalarial treatment to only those confirmed as having malaria parasites becomes paramount. This motivates for this assessment of the cost-effectiveness of routine use of rapid diagnostic tests (RDTs) as an integral part of deploying artemisinin-based combination therapies (ACTs).

Methods

The costs and cost-effectiveness of using RDTs to limit the use of ACTs to those who actually have Plasmodium falciparum parasitaemia in two districts in southern Mozambique were assessed. To evaluate the potential impact of introducing definitive diagnosis using RDTs (costing $0.95), five scenarios were considered, assuming that the use of definitive diagnosis would find that between 25% and 75% of the clinically diagnosed malaria patients are confirmed to be parasitaemic. The base analysis compared two ACTs, artesunate plus sulfadoxine/pyrimethamine (AS+SP) costing $1.77 per adult treatment and artemether-lumefantrine (AL) costing $2.40 per adult treatment, as well as the option of restricting RDT use to only those older than six years. Sensitivity analyses considered lower cost ACTs and RDTs and different population age distributions.

Results

Compared to treating patients on the basis of clinical diagnosis, the use of RDTs in all clinically diagnosed malaria cases results in cost savings only when 29% and 52% or less of all suspected malaria cases test positive for malaria and are treated with AS+SP and AL, respectively. These cut-off points increase to 41.5% (for AS+SP) and to 74% (for AL) when the use of RDTs is restricted to only those older than six years of age. When 25% of clinically diagnosed patients are RDT positive and treated using AL, there are cost savings per malaria positive patient treated of up to $2.12. When more than 29% of clinically diagnosed cases are malaria test positive, the incremental cost per malaria positive patient treated is less than US$ 1. When relatively less expensive ACTs are introduced (e.g. current WHO preferential price for AL of $1.44 per adult treatment), the RDT price to the healthcare provider should be $0.65 or lower for RDTs to be cost saving in populations with between 30 and 52% of clinically diagnosed malaria cases being malaria test positive.

Conclusion

While the use of RDTs in all suspected cases has been shown to be cost-saving when parasite prevalence among clinically diagnosed malaria cases is low to moderate, findings show that targeting RDTs at the group older than six years and treating children less than six years on the basis of clinical diagnosis is even more cost-saving. In semi-immune populations, young children carry the highest risk of severe malaria and many healthcare providers would find it harder to deny antimalarials to those who test negative in this age group.  相似文献   

10.
Early diagnosis and appropriate treatment are key elements of malaria control programs in endemic areas. A major step forward in recent years has been the production and use of rapid diagnostic tests (RDTs) in settings where microscopy is impracticable. Many current RDTs target the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) released in the plasma of infected individuals. These RDTs have had an indisputably positive effect on malaria management, but still present several limitations, including the poor characterization of the commercial monoclonal antibodies (mAbs) used for PfHRP2 detection, variable sensitivity and specificity and high costs. RDT use is further limited by impaired stability caused by temperature fluctuations during transport and uncontrolled storage in field-based facilities. To circumvent such drawbacks, an alternative could be the development of well-characterized, stabilized recombinant antibodies, with high binding affinity and specificity. Here, we report the characterization of the cDNA sequences encoding the Fab fragment of F1110 and F1546, two novel anti-PfHRP2 mAbs. FabF1546 was produced in the Escherichia coli periplasm. Its properties of binding to the parasite and to a recombinant PfHRP-2 antigen were similar to those of the parental mAb. As the affinity and stability of recombinant antibodies can be improved by protein engineering, our results open a novel approach for the development of an improved RDT for malaria diagnosis.Key words: Plasmodium falciparum, malaria, histidine-rich protein, monoclonal antibodies, recombinant Fab, rapid diagnostic test  相似文献   

11.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   

12.
《MABS-AUSTIN》2013,5(4):416-427
Early diagnosis and appropriate treatment are key elements of malaria control programs in endemic areas. A major step forward in recent years has been the production and use of rapid diagnostic tests (RDTs) in settings where microscopy is impracticable. Many current RDTs target the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) released in the plasma of infected individuals. These RDTs have had an indisputably positive effect on malaria management, but still present several limitations, including the poor characterization of the commercial monoclonal antibodies (mAbs) used for PfHRP2 detection, variable sensitivity and specificity, and high costs. RDT use is further limited by impaired stability caused by temperature fluctuations during transport and uncontrolled storage in field-based facilities. To circumvent such drawbacks, an alternative could be the development of well-characterized, stabilized recombinant antibodies, with high binding affinity and specificity. Here, we report the characterization of the cDNA sequences encoding the Fab fragment of F1110 and F1546, two novels anti-PfHRP2 mAbs. FabF1546 was produced in the Escherichia coli periplasm. Its properties of binding to the parasite and to a recombinant PfHRP-2 antigen were similar to those of the parental mAb. As the affinity and stability of recombinant antibodies can be improved by protein engineering, our results open a novel approach for the development of an improved RDT for malaria diagnosis.  相似文献   

13.

Background

Although malaria rapid diagnostic tests (RDT) are simple to perform, they remain subject to errors, mainly related to the post-analytical phase. We organized the first large scale SMS based external quality assessment (EQA) on correct reading and interpretation of photographs of a three-band malaria RDT among laboratory health workers in the Democratic Republic of the Congo (DR Congo).

Methods and Findings

High resolution EQA photographs of 10 RDT results together with a questionnaire were distributed to health facilities in 9 out of 11 provinces in DR Congo. Each laboratory health worker answered the EQA by Short Message Service (SMS). Filled-in questionnaires from each health facility were sent back to Kinshasa. A total of 1849 laboratory health workers in 1014 health facilities participated. Most frequent errors in RDT reading were i) failure to recognize invalid (13.2–32.5% ) or negative test results (9.8–12.8%), (ii) overlooking faint test lines (4.1–31.2%) and (iii) incorrect identification of the malaria species (12.1–17.4%). No uniform strategy for diagnosis of malaria at the health facility was present. Stock outs of RDTs occurred frequently. Half of the health facilities had not received an RDT training. Only two thirds used the RDT recommended by the National Malaria Control Program. Performance of RDT reading was positively associated with training and the technical level of health facility. Facilities with RDT positivity rates >50% and located in Eastern DR Congo performed worse.

Conclusions

Our study confirmed that errors in reading and interpretation of malaria RDTs are widespread and highlighted the problem of stock outs of RDTs. Adequate training of end-users in the application of malaria RDTs associated with regular EQAs is recommended.  相似文献   

14.

Background

In the Peruvian Amazon, Plasmodium falciparum and Plasmodium vivax malaria are endemic in rural areas, where microscopy is not available. Malaria rapid diagnostic tests (RDTs) provide quick and accurate diagnosis. However, pfhrp2 gene deletions may limit the use of histidine-rich protein-2 (PfHRP2) detecting RDTs. Further, cross-reactions of P. falciparum with P. vivax-specific test lines and vice versa may impair diagnostic specificity.

Methods

Thirteen RDT products were evaluated on 179 prospectively collected malaria positive samples. Species diagnosis was performed by microscopy and confirmed by PCR. Pfhrp2 gene deletions were assessed by PCR.

Results

Sensitivity for P. falciparum diagnosis was lower for PfHRP2 compared to P. falciparum-specific Plasmodium lactate dehydrogenase (Pf-pLDH)- detecting RDTs (71.6% vs. 98.7%, p<0.001). Most (19/21) false negative PfHRP2 results were associated with pfhrp2 gene deletions (25.7% of 74 P. falciparum samples). Diagnostic sensitivity for P. vivax (101 samples) was excellent, except for two products. In 10/12 P. vivax-detecting RDT products, cross-reactions with the PfHRP2 or Pf-pLDH line occurred at a median frequency of 2.5% (range 0%–10.9%) of P. vivax samples assessed. In two RDT products, two and one P. falciparum samples respectively cross-reacted with the Pv-pLDH line. Two Pf-pLDH/pan-pLDH-detecting RDTs showed excellent sensitivity with few (1.0%) cross-reactions but showed faint Pf-pLDH lines in 24.7% and 38.9% of P. falciparum samples.

Conclusion

PfHRP2-detecting RDTs are not suitable in the Peruvian Amazon due to pfhrp2 gene deletions. Two Pf-pLDH-detecting RDTs performed excellently and are promising RDTs for this region although faint test lines are of concern.  相似文献   

15.
ABSTRACT: BACKGROUND: Malaria rapid diagnostic tests (RDTs) are protected from humidity-caused degradation by a desiccant added to the device packaging. The present study assessed malaria RDT products for the availability, type and design of desiccants and their information supplied in the instructions for use (IFU). METHODS: Criteria were based on recommendations of the World Health Organization (WHO), the European Community (CE) and own observations. Silica gel sachets were defined as selfindicating (all beads coated with a humidity indicator that changes colour upon saturation), partial-indicating (part of beads coated) and non-indicating (none of the beads coated). Indicating silica gel sachets were individually assessed for humidity saturation and (in case of partial-indicating silica gels) for the presence of indicating beads. RESULTS: Fifty malaria RDT products from 25 manufacturers were assessed, 14 (28%) products were listed by the "Global Fund Quality Assurance Policy" and 31 (62%) were CE-marked. All but one product contained a desiccant, mostly (47/50, 94%) silica gel. Twenty (40%) RDT products (one with no desiccant and 19 with non-indicating desiccant) did not meet the WHO guidelines recommending indicating desiccant. All RDT products with self- or partialindicating silica gel (n = 22 and 8 respectively) contained the toxic cobalt dichloride as humidity indicator. Colour change indicating humidity saturation was observed for 8/16 RDT products, at a median incidence of 0.8% (range 0.05%-4.6%) of sachets inspected. In all RDTs with partial-indicating silica gel, sachets with no colour indicating beads were found (median proportion 13.5% (0.6% - 17.8%) per product) and additional light was needed to assess the humidity colour. Less than half (14/30, 47%) IFUs of RDT products with indicating desiccants mentioned to check the humidity saturation before using the test. Information on properties, safety hazards and disposal of the desiccant was not included in any of the IFUs. There were no differences between Global Fund-listed and CE marked RDT products compared to those which were not. Similar findings were noted for a panel of 11 HIV RDTs that was assessed with the same checklist as the malaria RDTs. CONCLUSION: RDTs showed shortcomings in desiccant type and information supplied in the IFU.  相似文献   

16.
ABSTRACT: BACKGROUND: Although early diagnosis and prompt treatment is an important strategy for control of malaria, using fever to initiate presumptive treatment with expensive artemisinin combination therapy is a major challenge; particularly in areas with declining burden of malaria. This study was conducted using community-owned resource persons (CORPs) to provide early diagnosis and treatment of malaria, and collect data for estimation of malaria burden in four villages of Korogwe district, north-eastern Tanzania. METHODS: In 2006, individuals with history of fever within 24 hours or fever (axillary temperature [greater than or equal to]37.5degreesC) at presentation were presumptively treated using sulphadoxine/pyrimethamine. Between 2007 and 2010, individuals aged five years and above, with positive rapid diagnostic tests (RDTs) were treated with artemether/lumefantrine (AL) while under-fives were treated irrespective of RDT results. Reduction in anti-malarial consumption was determined by comparing the number of cases that would have been presumptively treated and those that were actually treated based on RDTs results. Trends of malaria incidence and slide positivity rates were compared between lowlands and highlands. RESULTS: Of 15,729 cases attended, slide positivity rate was 20.4% and declined by >72.0% from 2008, reaching <10.0% from 2009 onwards; and the slide positivity rates were similar in lowlands and highlands from 2009 onwards. Cases with fever at presentation declined slightly, but remained at >40.0% in under-fives and >20.0% among individuals aged five years and above. With use of RDTs, cases treated with AL decreased from <58.0% in 2007 to <11.0% in 2010 and the numbers of adult courses saved were 3,284 and 1,591 in lowlands and highlands respectively. Malaria incidence declined consistently from 2008 onwards; and the highest incidence of malaria shifted from children aged <10 years to individuals aged 10-19 years from 2009. CONCLUSIONS: With basic training, supervision and RDTs, CORPs successfully provided early diagnosis and treatment and reduced consumption of anti-malarials. Progressively declining malaria incidence and slide positivity rates suggest that all fever cases should be tested with RDTs before treatment. Data collected by CORPs was used to plan phase 1b MSP3 malaria vaccine trial and will be used for monitoring and evaluation of different health interventions. The current situation indicates that there is a remarkable changing pattern of malaria and these areas might be moving from control to pre-elimination levels.  相似文献   

17.

Background

Malaria Rapid Diagnostic Tests (RDTs) are widely used to diagnose malaria. The present study evaluated a new RDT, the Clearview® Malaria pLDH test targeting the pan-Plasmodium antigen lactate dehydrogenase (pLDH).

Methods

The Clearview® Malaria pLDH test was evaluated on fresh samples obtained in returned international travellers using microscopy corrected by PCR as the reference method. Included samples were Plasmodium falciparum (139), Plasmodium vivax (22), Plasmodium ovale (20), Plasmodium malariae (7), and 102 negative.

Results

Overall sensitivity for the detection of Plasmodium spp was 93.2%. For P. falciparum, the sensitivity was 98.6%; for P. vivax, P. ovale and P. malariae, overall sensitivities were 90.9%, 60.0% and 85.7% respectively. For P. falciparum and for P. vivax, the sensitivities increased to 100% at parasite densities above 100/μl. The specificity was 100%. The test was easily to perform and the result was stable for at least 1 hour.

Conclusion

The Clearview® Malaria pLDH was efficient for the diagnosis of malaria. The test was very sensitive for P. falciparum and P. vivax detection. The sensitivities for P. ovale and P. malariae were better than other RDTs
  相似文献   

18.

Background

Individual rapid tests for serodiagnosis (RDT) of human African trypanosomiasis (HAT) are particularly suited for passive screening and surveillance. However, so far, no large scale evaluation of RDTs has been performed for diagnosis of Trypanosoma brucei gambiense HAT in West Africa. The objective of this study was to assess the diagnostic accuracy of 2 commercial HAT-RDTs on stored plasma samples from West Africa.

Methodology/Principal findings

SD Bioline HAT and HAT Sero-K-Set were performed on 722 plasma samples originating from Guinea and Côte d’Ivoire, including 231 parasitologically confirmed HAT patients, 257 healthy controls, and 234 unconfirmed individuals whose blood tested antibody positive in the card agglutination test but negative by parasitological tests. Immune trypanolysis was performed as a reference test for trypanosome specific antibody presence. Sensitivities in HAT patients were respectively 99.6% for SD Bioline HAT, and 99.1% for HAT Sero-K-Set, specificities in healthy controls were respectively 87.9% and 88.3%. Considering combined positivity in both RDTs, increased the specificity significantly (p≤0.0003) to 93.4%, while 98.7% sensitivity was maintained. Specificities in controls were 98.7–99.6% for the combination of one or two RDTs with trypanolysis, maintaining a sensitivity of at least 98.1%.

Conclusions/Significance

The observed specificity of the single RDTs was relatively low. Serial application of SD Bioline HAT and HAT Sero-K-Set might offer superior specificity compared to a single RDT, maintaining high sensitivity. The combination of one or two RDTs with trypanolysis seems promising for HAT surveillance.  相似文献   

19.
20.
We have optimized a faster and cheaper real-time PCR and developed a conventional genus specific PCR based on 18S rRNA gene to detect malaria parasites in low-grade parasitemias. Additionally, we compared these PCRs to the OptiMAL-IT test. Since there is no consensus on choice of standard quantitative curve in real-time assays, we decided to investigate the performance of parasite DNA from three different sources: "genome", amplicon and plasmid. The amplicon curve showed the best efficiency in quantifying parasites. Both PCR assays detected 100% of the clinical samples tested; the sensitivity threshold was 0.5 parasite/mul and no PCR positive reaction occurred when malaria parasites were not present. Conversely, if OptiMAL-IT were employed for malaria diagnosis, 30% of false-negative results could be expected. We conclude that PCR assays have potential for detecting malaria parasites in asymptomatic infections, in evaluation of malaria vaccine molecule candidates, for screening blood donors, especially in endemic areas, or even in monitoring malaria therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号