首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequenced genomes of dissimilatory sulfur-oxidizing and sulfate-reducing bacteria containing genes coding for DsrAB, the enzyme dissimilatory sulfite reductase, inevitably also contain the gene coding for the 12-kDa DsrC protein. DsrC is thought to have a yet unidentified role associated with the activity of DsrAB. Here we report the solution structure of DsrC from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum determined with NMR spectroscopy in reducing conditions, and we describe the redox behavior of two conserved cysteine residues upon transfer to an oxidizing environment. In reducing conditions, the DsrC structure is disordered in the highly conserved carboxy-terminus. We present multiple lines of evidence that, in oxidizing conditions, a strictly conserved cysteine (Cys111) at the penultimate position in the sequence forms an intramolecular disulfide bond with Cys100, which is conserved in DsrC in all organisms with DsrAB. While an intermolecular Cys111-Cys111 disulfide-bonded dimer is rapidly formed under oxidizing conditions, the intramolecularly disulfide-bonded species (Cys100-Cys111) is the thermodynamically stable form of the protein under these conditions. Treatment of the disulfidic forms with reducing agent regenerates the monomeric species that was structurally characterized. Using a band-shift technique under nondenaturing conditions, we obtained evidence for the interaction of DsrC with heterohexameric DsrEFH, a protein encoded in the same operon. Mutation of Cys100 to serine prevented formation of the DsrC species assigned as an intramolecular disulfide in oxidizing conditions, while still allowing formation of the intermolecular Cys111-Cys111 dimer. In the reduced form, this mutant protein still interacted with DsrEFH. This was not the case for the Cys111Ser and Cys100Ser/Cys111Ser mutants, both of which also did not form protein dimers. Our observations highlight the central importance of the carboxy-terminal DsrC cysteine residues and are consistent with a role as a sulfur-substrate binding/transferring protein, as well as with an electron-transfer function via thiol-disulfide interchanges.  相似文献   

2.
A 991 bp DNA fragment, consisting of a 225 amino acid reading frame homologous to outer membrane protein coding ompA gene, was cloned from a purple sulfur bacterium Allochromatium vinosum. The homology analysis revealed up to 51% similarity to other bacterial species. The absence of branching within diazotrophs or other taxonomically related groups shows the structural importance of the protein regardless of the metabolism and evolution of the species.  相似文献   

3.
The nucleotide sequence of a 1634 bp DNA fragment from the photosynthetic purple sulfur bacterium Allochromatium vinosum contains one complete and two partial open reading frames. Sequence comparisons to genes from other organisms suggest that this A. vinosum DNA fragment contains, starting from the 5 end, the following: (1) 234 bp at the 3 end of the A. vinosum purH gene, coding for 78 amino acids at the C-terminus of the bi-functional 5-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase/IMP cyclohydrolase (EC 2.1.2.3), an enzyme involved in de novo purine biosynthesis; (2) 777 bp of the A. vinosum lpxA gene, coding for all 259 amino acids of the UDP-N-acetylglucosamine-O-acyltransferase, an enzyme involved in lipid A biosynthesis; and (3) 567 bp at the 5 end of the A. vinosum purD gene, coding for 189 amino acids at the N-terminus of 5-phosphoribosyl glycinamide synthetase (EC 6.3.4.13), a second enzyme involved in de novo purine biosynthesis. The presence of a gene coding for an enzyme involved in lipid A biosynthesis between two genes coding for enzymes of the de novo purine biosynthesis pathway represents a unique arrangement of these genes.  相似文献   

4.
Adenosine-5'-phosphosulfate (APS) reductase participates in the oxidation of sulfite to APS in Allochromatium vinosum. Oxidation of sulfite via the APS pathway yields ATP through substrate-level phosphorylation. An alternative enzyme for the oxidation of sulfite to sulfate, sulfite:acceptor oxidoreductase, has also been reported in Ach. vinosum. Oxidation of sulfite through this enzyme does not yield ATP. APS reductase is expressed constitutively in Ach. vinosum, suggesting that it performs an important role in this organism. However, studies carried out with batch cultures of an APS reductase mutant showed little or no differences in growth or in the rates of substrate oxidation when compared to the wild-type, therefore questioning the role of this enzyme. In an attempt to establish whether the ATP gain derived from APS-reductase-mediated oxidation of sulfite is relevant for energy-limited cultures, we compared growth of the wild-type SM50 and the APS-reductase-deficient mutant D3 when grown in continuous culture under different degrees of illumination. Little differences in the specific growth rates of the two strains were observed at light-limiting irradiances, suggesting that the ATP gained during sulfite oxidation through the APS reductase pathway does not constitute a significant energy input. However, at saturating irradiances, wild-type Ach. vinosum grew considerably faster than the mutant. Increasing the irradiance even further resulted in inhibition of the wild-type strain down to the level of the APS reductase mutant. The implications of these results are discussed.  相似文献   

5.
6.
7.
Establishment of a system for manipulative genetics in phototrophic sulfur bacteria of the family Chromatiaceae has mainly been hampered by the lack of reliable methods for growth of these organisms on agar surfaces, techniques for streaking, growth on selective media, screening for antibiotic resistance markers, and most importantly by the lack of a system for DNA transfer. We, therefore, developed minimal and complex agar media for Chromatium vinosum strain D (DSM 180T), a representative of the purple sulfur bacteria. Sensitivity of C. vinosum towards a broad range of antibiotics was tested in liquid cultures and solidified media, allowing us to select appropriate antibiotic resistance markers. Furthermore, a system for conjugative transfer of IncP-mobilizable plasmids from Escherichia coli to C. vinosum was established. Broad-host-range IncQ vectors were mobilized to C. vinosum with the aid of plasmid RP4 either present extrachromosomally or integrated in the chromosome of E. coli S17-1. Conjugation efficiencies of up to 1 were observed. Agarose gel electrophoretic analysis showed that transconjugants contained the transferred plasmids in addition to the two detectable plasmids of wild-type C. vinosum. All genetic markers tested (kanamycin, gentamicin, ampicillin, amikacin, tetracycline) were expressed in C. vinosum. Furthermore, high-frequency transfer of plasmid RP4 from C. vinosum to E. coli and to Rhodospirillum rubrum K100 was demonstrated. Received: 3 March 1995 / Accepted: 22 May 1995  相似文献   

8.
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.  相似文献   

9.
Two different pathways for thiosulphate oxidation are present in the purple sulphur bacterium Allochromatium vinosum: oxidation to tetrathionate and complete oxidation to sulphate with obligatory formation of sulphur globules as intermediates. The tetrathionate:sulphate ratio is strongly pH-dependent with tetrathionate formation being preferred under acidic conditions. Thiosulphate dehydrogenase, a constitutively expressed monomeric 30 kDa c-type cytochrome with a pH optimum at pH 4.2 catalyses tetrathionate formation. A periplasmic thiosulphate-oxidizing multienzyme complex (Sox) has been described to be responsible for formation of sulphate from thiosulphate in chemotrophic and phototrophic sulphur oxidizers that do not form sulphur deposits. In the sulphur-storing A. vinosum we identified five sox genes in two independent loci (soxBXA and soxYZ). For SoxA a thiosulphate-dependent induction of expression, above a low constitutive level, was observed. Three sox-encoded proteins were purified: the heterodimeric c-type cytochrome SoxXA, the monomeric SoxB and the heterodimeric SoxYZ. Gene inactivation and complementation experiments proved these proteins to be indispensable for thiosulphate oxidation to sulphate. The intermediary formation of sulphur globules in A. vinosum appears to be related to the lack of soxCD genes, the products of which are proposed to oxidize SoxY-bound sulphane sulphur. In their absence the latter is instead transferred to growing sulphur globules.  相似文献   

10.
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180(T)). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble alpha(2)beta(2)gamma(2)-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.  相似文献   

11.
Sulfide oxidation in the phototrophic purple sulfur bacterium Chromatium vinosum D (DSMZ 180T) was studied by insertional inactivation of the fccAB genes, which encode flavocytochrome c, a protein that exhibits sulfide dehydrogenase activity in vitro. Flavocytochrome c is located in the periplasmic space as shown by a PhoA fusion to the signal peptide of the hemoprotein subunit. The genotype of the flavocytochrome-c-deficient Chr. vinosum strain FD1 was verified by Southern hybridization and PCR, and the absence of flavocytochrome c in the mutant was proven at the protein level. The oxidation of thiosulfate and intracellular sulfur by the flavocytochrome-c-deficient mutant was comparable to that of the wild-type. Disruption of the fccAB genes did not have any significant effect on the sulfide-oxidizing ability of the cells, showing that flavocytochrome c is not essential for oxidation of sulfide to intracellular sulfur and indicating the presence of a distinct sulfide-oxidizing system. In accordance with these results, Chr. vinosum extracts catalyzed electron transfer from sulfide to externally added duroquinone, indicating the presence of the enzyme sulfide:quinone oxidoreductase (EC 1.8.5.-). Further investigations showed that the sulfide:quinone oxidoreductase activity was sensitive to heat and to quinone analogue inhibitors. The enzyme is strictly membrane-bound and is constitutively expressed. The presence of sulfide:quinone oxidoreductase points to a connection of sulfide oxidation to the membrane electron transport system at the level of the quinone pool in Chr. vinosum. Received: 5 November 1997 / Accepted: 30 March 1998  相似文献   

12.
Microbial redox reactions of inorganic sulfur compounds are one of the important reactions for the recycling of sulfur to maintain the environmental sulfur balance. These reactions are carried out by phylogenetically diverse microorganisms. The sulfur oxidizing gene cluster (sox) of α-proteobacteria, Allochromatium vinosum comprises two divergently transcribed units. The central players of this process are SoxY, SoxZ and SoxL. SoxY is sulfur compound binder which binds to sulfur anions with the help of SoxZ. SoxL is a rhodanese like protein, which then cleaves off the sulfur substrate from the SoxYZ complex to recycle the SoxY and SoxZ. In the present work, homology modeling has been employed to build the three dimensional structures of SoxY, SoxZ and SoxL. With the help of docking simulations the amino acid residues of these proteins involved in the interactions have been identified. The interactions between the SoxY, SoxZ and SoxL proteins are mediated mainly through hydrogen bonding. Strong positive fields created by the SoxZ and SoxL proteins are found to be responsible for the binding and removal of the sulfur anion. The probable biochemical mechanism of sulfur anion oxidation process has been identified.  相似文献   

13.
Structural aspects of the core antenna in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum were studied by means of fluorescence emission and singlet-singlet annihilation measurements. In both species the number of bacteriochlorophylls of the core antenna between which energy transfer can occur corresponds to one core-reaction center complex only. From measurements of variable fluorescence we conclude that in C. tepidum excitation energy can be transferred back from the core antenna (B920) to the peripheral B800–850 complex in spite of the relatively large energy gap, and on basis of annihilation measurements a model of separate core-reaction center units accompanied by their own peripheral antenna is suggested. C. vinosum contains besides a core antenna, B890, two peripheral antennae, B800–820 and B800–850. Energy transfer was found to occur from the core to B800–850, but not to B800–820, and it was concluded that in C. vinosum each core-reaction center complex has its own complement of B800–850. The results reported here are compared to those obtained earlier with various strains and species of purple non-sulfur bacteria.Abbreviations BChl- bacteriochlorophyll - B800–820 and B800–850- antenna complexes with Qy-band absorption maxima near 800 nm and 820 or 850 nm, respectively - B890 and B920- antenna complexes with Qy-band absorption maxima near 890 and 920 nm, respectively - LH1- light harvesting 1 or core antenna - LH2- light harvesting 2 or peripheral antenna  相似文献   

14.
15.
Phototrophic purple sulfur bacteria oxidize sulfide to elemental sulfur, which is stored as intracellular sulfur globules. The mutant Allochromatium vinosum strain 21D, containing an inactivated dsrB gene, is unable to further oxidize intracellularly stored sulfur to sulfate. This mutant was used as a biocatalyst in a biotechnological process to eliminate sulfide from synthetic wastewater and to recycle elemental sulfur as a raw material. For this purpose, the mutant was grown in an illuminated 5-liter bioreactor (30 microE/m2/s PAR) at 30 degrees C for 61 days in anoxic phototrophic medium. The process of sulfide removal was semi-continuous and consisted of three consecutive fed-batch sections. Sulfide was repeatedly added into the bioreactor and oxidized by the cells to sulfur. In the presence of the mutant, no unwanted sulfate was produced during sulfide removal. A maximum sulfide removal rate of 49.3 microM/h, a maximum sulfide removal efficiency of 98.7%, and 60.4% sulfur recycling were achieved.  相似文献   

16.
An amino acid sequence is proposed for the cytochrome c' from the photosynthetic purple sulphur bacterium Chromatium vinosum strain D. It is single polypeptide chain of 131 residues, with haem-attachment cysteine residues at positions 121 and 124. The results discredit an earlier report [Dus, Bartsch & Kamen (1962) J. Biol. Chem 237, 3083--3093] of a di-haem peptide sequence from this protein. The sequence belongs to the same class as the published Alcaligenes and Rhodospirillum rubrum cytochrome c' squences, but the resemblance is not close. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50,093 (15 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1978) 169, 5.  相似文献   

17.
In the phototrophic sulfur bacterium Allochromatium vinosum, sulfur of oxidation state zero stored in intracellular sulfur globules is an obligate intermediate during the oxidation of sulfide and thiosulfate. The proteins encoded in the dissimilatory sulfite reductase (dsr) locus are essential for the oxidation of the stored sulfur. DsrMKJOP form a membrane-spanning complex proposed to accept electrons from or to deliver electrons to cytoplasmic sulfur-oxidizing proteins. In frame deletion mutagenesis showed that each individual of the complex-encoding genes is an absolute requirement for the oxidation of the stored sulfur in Alc. vinosum. Complementation of the ΔdsrJ mutant using the conjugative broad host range plasmid pBBR1-MCS2 and the dsr promoter was successful. The importance of the DsrMKJOP complex is underlined by the fact that the respective genes occur in all currently sequenced genomes of sulfur-forming bacteria such as Thiobacillus denitrificans and Chlorobaculum tepidum. Furthermore, closely related genes are present in the genomes of sulfate- and sulfite-reducing prokaryotes. A phylogenetic analysis showed that most dsr genes from sulfide oxidizers are clearly separated of those from sulfate reducers. Surprisingly, the dsrMKJOP genes of the Chlorobiaceae all cluster together with those of the sulfate/sulfite-reducing prokaryotes, indicating a lateral gene transfer at the base of the Chlorobiaceae.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
The kinetics of electron transfer from reduced high-potential iron-sulfur protein (HiPIP) to the photooxidized tetraheme cytochrome c subunit (THC) bound to the photosynthetic reaction center (RC) from the purple sulfur bacterium Allochromatium vinosum were studied under controlled redox conditions by flash absorption spectroscopy. At ambient redox potential Eh = +200 mV, where only the high-potential (HP) hemes of the THC are reduced, the electron transfer from HiPIP to photooxidized HP heme(s) follows second-order kinetics with rate constant k = (4.2 +/- 0.2) 10(5) M(-1) s(-1) at low ionic strength. Upon increasing the ionic strength, k increases by a maximum factor of ca. 2 at 640 mM KCl. The role of Phe48, which lies on the external surface of HiPIP close to the [Fe4S4] cluster and presumably on the electron transfer pathway to cytochrome heme(s), was investigated by site-directed mutagenesis. Substitution of Phe48 with arginine, aspartate, and histidine completely prevents electron donation. Conversely, electron transfer is still observed upon substitution of Phe48 with tyrosine and tryptophan, although the rate is decreased by more than 1 order of magnitude. These results suggest that Phe48 is located on a key protein surface patch essential for efficient electron transfer, and that the presence of an aromatic hydrophobic residue on the putative electron-transfer pathway plays a critical role. This conclusion was supported by protein docking calculations, resulting in a structural model for the HiPIP-THC complex, which involves a docking site close to the LP heme farthest from the bacteriochlorophyll special pair.  相似文献   

19.
During oxidation of reduced sulfur compounds, the purple sulfur bacterium Allochromatium vinosum stores sulfur in the periplasm in the form of intracellular sulfur globules. The sulfur in the globules is enclosed by a protein envelope that consists of the homologous 10.5-kDa proteins SgpA and SgpB and the smaller 8.5-kDa SgpC. Reporter gene fusions of sgpA and alkaline phosphatase showed the constitutive expression of sgpA in A. vinosum and yielded additional evidence for the periplasmic localization of the sulfur globules. Expression analysis of the wild-type sgp genes by quantitative RT-PCR using the LightCycler system showed the constitutive expression of all three sgp genes. The expression of sgpB and sgpC is significantly enhanced under photolithotrophic conditions. Interestingly, sgpB is expressed ten times less than sgpA and sgpC implying that SgpA and SgpC are the main proteins of the sulfur globule envelope. Mutants with inactivated sgpA or sgpB did not show any differences in comparison with the wild-type, i.e., the encoded proteins can replace each other, whereas inactivation of sgpC leads to the formation of considerably smaller sulfur globules. This indicates a role of SgpC for globule expansion. A sgpBC double mutant was unable to grow on sulfide and could not form sulfur globules, showing that the protein envelope is indispensible for the formation and deposition of intracellular sulfur.The paper is dedicated to Prof. Dr. Dr. h.c. mult. Hans Günter Schlegel, Göttingen, on the occasion of his 80th birthday on October 24th, 2004, with great gratitude, as our interest in microbial sulfur metabolism goes back to the early 1960s, when HGT worked in Prof. Schlegels laboratory and in 1972 established this field in Bonn.  相似文献   

20.
The pet operon, encoding the prosthetic group-containing subunits of the cytochrome bc 1 complex of the purple sulfur bacterium Chromatium vinosum, has been cloned and sequenced. The 5 to 3 order of the C. vinosum genes is: petA, encoding the Rieske iron-sulfur protein; petB, encoding cytochrome b; and petC, encoding cytochrome c1. Cytochrome b is the best conserved subunit of the C. vinosum complex, when compared to the corresponding proteins from four photosynthetic purple non-sulfur bacteria (70 to 74% identity). Identities for the C. vinosum Rieske protein and those from purple non-sulfur bacteria range from 60 to 64%. The C-terminal region of the C. vinosum Rieske protein is quite similar to those of purple non-sulfur bacteria, while the N-terminal region is more closely related to mitochondrial Rieske proteins of organisms such as Neurospora crassa. Cytochrome c1 is the least well-conserved protein of the C. vinosum cytochrome bc1 complex, with identities ranging from 49 to 51% when compared to the corresponding proteins from purple non-sulfur bacteria. A well-conserved negatively-charged region of the cytochromes c1 of the purple non-sulfur bacteria, thought to be involved in binding the electron acceptor for the complex, cytochrome c2, is absent in C. vinosum cytochrome c1. A positive Southern hybridization using a probe constructed from the Rhodobacter sphaeroides fbcQ gene, which codes for a fourth subunit of the cytochrome bc1 complex in that bacterium, suggests the presence of a homologous gene in C. vinosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号