首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Development requires fertilization by a single sperm. In Caenorhabditis elegans, fertilization occurs in a sperm-filled spermatheca, implying the barrier to polyspermy is generated in this compartment. Eggshell chitin synthesis is initiated at fertilization, and chitin is deposited before the zygote exits the spermatheca. Whereas polyspermy is very rare in wild-type, here we report an incidence of 14%-51% in zygotes made chitin deficient by loss of chitin synthase-1 (CHS-1), the CHS-1 substrate UDP-N-acetylglucosamine, the CHS-1-interacting protein EGG-3, or the sperm-provided protein SPE-11. The spe-11(hc90) mutant deposits chitin at the male end but fails to complete a continuous layer. The polyspermy barrier is also compromised by loss of the chitin-binding protein CBD-1 or the GLD-1-regulated LDL receptor-like EGG-1, together with its homolog, EGG-2. Loss of CBD-1 or EGG-1/2 disrupts oocyte cortical distribution of CHS-1, as well as MBK-2 and EGG-3. In CBD-1 or EGG-1/2 deficiency, chitin is synthesized but the eggshell is fractured, suggesting aberrantly clustered CHS-1/MBK-2/EGG-3 may fail to support construction of a continuous eggshell. Together, our results show that eggshell chitin is required to prevent polyspermy in C. elegans, in addition to its previously reported requirement in polar body extrusion and polarization of the zygote.  相似文献   

5.
After synaptic vesicle exocytosis, synaptic vesicle proteins must be retrieved from the plasma membrane, sorted away from other membrane proteins, and reconstituted into a functional synaptic vesicle. The nematode Caenorhabditis elegans is an organism well suited for a genetic analysis of this process. In particular, three types of genetic studies have contributed to our understanding of synaptic vesicle endocytosis. First, screens for mutants defective in synaptic vesicle recycling have identified new proteins that function specifically in neurons. Second, RNA interference has been used to quickly confirm the roles of known proteins in endocytosis. Third, gene targeting techniques have elucidated the roles of genes thought to play modulatory or subtle roles in synaptic vesicle recycling. We describe a molecular model for synaptic vesicle recycling and discuss how protein disruption experiments in C. elegans have contributed to this model.  相似文献   

6.
To perform high-throughput studies on the biological effects of ionizing radiation in vivo, we have implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows the immobilization of worms with minimal stress for a rapid and controlled microbeam irradiation of multiple samples in parallel. Adapted from an established design, our microfluidic clamp consists of 16 tapered channels with 10-μm-thin bottoms to ensure charged particle traversal. Worms are introduced into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel guarantees that young adult worms are immobilized within minutes without the use of anesthesia. After site-specific irradiation with the microbeam, the worms can be released by reversing the flow direction in the clamp and collected for analysis of biological endpoints such as repair of radiation-induced DNA damage. For such studies, minimal sample manipulation and reduced use of drugs such as anesthetics that might interfere with normal physiological processes are preferable. By using our microfluidic device that allows simultaneous immobilization and imaging for irradiation of several whole living samples on a single clamp, here we show that 4.5-MeV proton microbeam irradiation induced DNA damage in wild-type C. elegans, as assessed by the formation of Rad51 foci that are essential for homologous repair of radiation-induced DNA damage.  相似文献   

7.
Jessica T. Chang 《Autophagy》2018,14(7):1276-1277
Macroautophagy/autophagy is a cellular recycling process that is required for the extended life span observed in many longevity paradigms, including in the nematode C. elegans. However, little is known regarding the spatiotemporal changes in autophagic activity in such long-lived mutants as well as in wild-type animals during normal aging. In a recent study, we report that autophagic activity decreases with age in several major tissues of wild-type C. elegans, including the intestine, body-wall muscle, pharynx, and nerve-ring neurons. Moreover, long-lived daf-2/insulin-signaling mutants and glp-1/Notch receptor mutants display increased autophagic activity, yet with different time- and tissue-specific differences. Notably, the intestine appears to be a critical tissue in which autophagy contributes to longevity in glp-1, but not in daf-2 mutants. Our findings indicate that autophagic degradation is reduced with age, possibly with distinct kinetics in different tissues, and that long-lived mutants increase autophagy in a tissue-specific manner, resulting in increased life span.  相似文献   

8.
9.
C. elegans contains a microtubule binding protein that resembles both dynein and kinesin. This protein has a MgATPase activity and copurifies on both sucrose gradients and DEAE Sephadex columns with a polypeptide of Mr approximately 400 kd. The ATPase activity is 50% inhibited by 10 microM vanadate, 1 mM N-ethyl maleimide, or 5 mM AMP-PNP; it is enhanced 50% by 0.2% Triton. The 400 kd polypeptide is cleaved at a single site by ultraviolet light in the presence of ATP and vanadate. In these ways, the protein resembles dynein. The protein also promotes ATP-dependent translocation of microtubules or axonemes, "plus" ends trailing. This property is kinesin-like; however, the motility is blocked by 5 microM vanadate, 1 mM N-ethyl maleimide, 0.5 mM ATP-gamma-S, or by ATP-vanadate-UV cleavage of the 400 kd polypeptide, characteristics that differ from kinesin. We propose that this protein is a novel microtubule translocator.  相似文献   

10.
Genetic control of programmed cell death in the nematode C. elegans   总被引:41,自引:0,他引:41  
H M Ellis  H R Horvitz 《Cell》1986,44(6):817-829
The wild-type functions of the genes ced-3 and ced-4 are required for the initiation of programmed cell deaths in the nematode Caenorhabditis elegans. The reduction or loss of ced-3 or ced-4 function results in a transformation in the fates of cells that normally die; in ced-3 or ced-4 mutants, such cells instead survive and differentiate, adopting fates that in the wild type and associated with other cells. ced-3 and ced-4 mutants appear grossly normal in morphology and behavior, indicating that programmed cell death is not an essential aspect of nematode development. The genes ced-3 and ced-4 define the first known step of a developmental pathway for programmed cell death, suggesting that these genes may be involved in determining which cells die during C. elegans development.  相似文献   

11.
《Neuron》2021,109(22):3633-3646.e7
  相似文献   

12.
It is widely accepted that chitin is present in nematodes. However, its precise role in embryogenesis is unclear and it is unknown if chitin is necessary in other nematode tissues. Here, we determined the roles of chitin and the two predicted chitin synthase genes in Caenorhabditis elegans by chitin localization and gene disruption. Using a novel probe, we detected chitin in the eggshell and discovered elaborate chitin localization patterns in the pharyngeal lumen walls. Chitin deposition in these two sites is likely regulated by the activities of chs-1 (T25G3.2) and chs-2 (F48A11.1), respectively. Reducing chs-1 gene activity by RNAi led to eggs that were fragile and permeable to small molecules, and in the most severe case, absence of embryonic cell division. Complete loss of function in a chs-1 deletion resulted in embryos that lacked chitin in their eggshells and failed to divide. These results showed that eggshell chitin provides both mechanical support and chemical impermeability essential to developing embryos. Knocking down chs-2 by RNAi caused a defect in the pharynx and led to L1 larval arrest, indicating that chitin is involved in the development and function of the pharynx.  相似文献   

13.
Genotoxic stress is a threat to our cells' genome integrity. Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale genomic instability. Because such changes may have tumorigenic potential, damaged cells are often eliminated via apoptosis. Loss of this apoptotic response is actually one of the hallmarks of cancer. Towards the effort to elucidate the DNA damage-induced signaling steps leading to these biological events, an easily accessible model system is required, where the acquired knowledge can reveal the mechanisms underlying more complex organisms. Accumulating evidence coming from studies in Caenorhabditis elegans point to its usefulness as such. In the worm's germline, DNA damage can induce both cell cycle arrest and apoptosis, two responses that are spatially separated. The latter is a tightly controlled process that is genetically indistinguishable from developmental programmed cell death. Upstream of the central death machinery, components of the DNA damage signaling cascade lie and act either as sensors of the lesion or as transducers of the initial signal detected. This review summarizes the findings of several studies that specify the elements of the DNA damage-induced responses, as components of the cell cycle control machinery, the repairing process or the apoptotic outcome. The validity of C. elegans as a tool to further dissect the complex signaling network of these responses and the high potential for it to reveal important links to cancer and other genetic abnormalities are addressed.  相似文献   

14.
A particle system, as understood in computer science, is a novel technique for modeling living organisms in their environment. Such particle systems have traditionally been used for modeling the complex dynamics of fluids and gases. In the present study, a particle system was devised to model the movement and feeding behavior of the nematode Caenorhabditis elegans in three different virtual environments: gel, liquid, and soil. The results demonstrate that distinct movements of the nematode can be attributed to its mechanical interactions with the virtual environment. These results also revealed emergent properties associated with modeling organisms within environment-based systems.  相似文献   

15.
16.
L Avery  H R Horvitz 《Neuron》1989,3(4):473-485
Using a laser microbeam to kill specific subsets of the pharyngeal nervous system of C. elegans, we found that feeding was accomplished by two separately controlled muscle motions, isthmus peristalsis and pumping. The single neuron M4 was necessary and sufficient for isthmus peristalsis. The MC neurons were necessary for normal stimulation of pumping in response to food, but pumping continued and was functional in MC- worms. The remaining 12 neuron types were also unnecessary for functional pumping. No operation we did, including destruction of the entire pharyngeal nervous system, abolished pumping altogether. When we killed all pharyngeal neurons except M4, the worms were viable and fertile, although retarded and starved. Since feeding is one of the few known essential actions controlled by the nervous system, we suggest that most of the C. elegans nervous system is dispensable in hermaphrodites under laboratory conditions. This may explain the ease with which nervous system mutants are isolated and handled in C. elegans.  相似文献   

17.
Eleven chromosomal products of somatic excision of Tc1 transposable elements have been cloned and sequenced. The cloning method did not involve genetic reversion; therefore the products analyzed should be representative. Six empty religated target sites were from excision of one Tc1 element inserted near actin genes on linkage group V; five were from a second Tc1 element inserted elsewhere on the same linkage group. All six products from the first element were identical in sequence to an empty target site from a second strain, indicating excision had been precise. Two of the products from the second element were also precise, whereas the other three contained four extra nucleotides at the point of excision, indicating an imprecise excision. The four nucleotides are the same in all cases and could represent two terminal nucleotides of the transposon plus a two-nucleotide target site duplication. The difference in the ratio of precise to imprecise excision at the two insertion sites suggests a possible chromosomal position effect on the pathway of Tc1 somatic excision.  相似文献   

18.
Kim TH  Hwang SB  Jeong PY  Lee J  Cho JW 《FEBS letters》2005,579(1):53-58
Tyrosine O-sulfation is one of the post-translational modification processes that occur to membrane proteins and secreted proteins in eukaryotes. Tyrosylprotein sulfotransferase (TPST) is responsible for this modification, and in this report, we describe the expression pattern and the biological role of TPST-A in the nematode Caenorhabditis elegans. We found that TPST-A was mainly expressed in the hypodermis, especially in the seam cells. Reduction of TPST-A activity by RNAi caused severe defects in cuticle formation, indicating that TPST-A is involved in the cuticle formation in the nematode. We found that RNAi of TPST-A suppressed the roller phenotype caused by mutations in the rol-6 collagen gene, suggesting that sulfation of collagen proteins may be important for proper organization of the extracellular cuticle matrix. The TPST-A RNAi significantly decreased the dityrosine level in the worms, raising the possibility that the sulfation process may be a pre-requisite for the collagen tyrosine cross-linking.  相似文献   

19.
The dauer larva is a specialized third-larval stage of Caenorhabditis elegans that is long-lived and resistant to environmental insult. The dauer larva is formed in response to a high external concentration of a constitu-tively secreted pheromone. Response to the dauer-inducing pheromone of C. elegans is a promising genetic model for metazoan chemosensory transduction. More than 20 genes have been identified that are required for normal pheromone response. The functions of these genes include production of the pheromone, exposure of sensory neuron endings to the environment, structural and functional integrity of those sensory endings, and the capacity of sensory neurons to make appropriate output. Genetic evidence suggests that two partially redundant sensory pathways act in concert to control dauer formation. At least two classes of chemosensory neurons, ADF and ASI, are implicated in the pheromone response. On the basis of on these findings, a speculative model for the pheromone response is proposed. In this model, the neurons ADF and ASI are pheromone sensors that repress dauer formation in the absence of pheromone and dere-press dauer formation in response to pheromone. It is currently unclear whether or not the two genetically defined sensory pathways both act in ADF and ASI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号