首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Honma  A Hirose 《Life sciences》1979,24(22):2023-2030
The potency of haloperidol and chlorpromazine, but not clozapine, for increasing homovanillic acid and activating tyrosine hydroxylase in the striatum was significantly weakened after the repeated administration in rats. These findings suggest that clozapine could supply enough dopamine to surmount the blockade of dopamine receptors in the striatum even after the repeated administration. This property of clozapine seems to be the cause of low incidence of extrapyramidal side effects in clinical use.  相似文献   

2.
3.
Excess glutamatergic neurotransmission may contribute to excitotoxic loss of nigrostriatal neurons in Parkinson's disease (PD). Here, we determined if increasing glutamate uptake could reduce the extent of tyrosine hydroxylase (TH) loss in PD progression. The beta-lactam antibiotic, ceftriaxone, increases the expression of glutamate transporter 1 (GLT-1), a glutamate transporter that plays a major role in glutamate clearance in central nervous system and may attenuate adverse behavioral or neurobiological function in other neurodegenerative disease models. In association with >80 % TH loss, we observed a significant decrease in glutamate uptake in the established 6-hydroxydopamine (6-OHDA) PD model. Ceftriaxone (200 mg/kg, i.p.) increased striatal glutamate uptake with >5 consecutive days of injection in nonlesioned rats and lasted out to 14 days postinjection, a time beyond that required for 6-OHDA to produce >70 % TH loss (~9 days). When ceftriaxone was given at the time of 6-OHDA, TH loss was ~57 % compared to ~85 % in temporally matched vehicle-injected controls and amphetamine-induced rotation was reduced about 2-fold. This attenuation of TH loss was associated with increased glutamate uptake, increased GLT-1 expression, and reduced Serine 19 TH phosphorylation, a calcium-dependent target specific for nigrostriatal neurons. These results reveal that glutamate uptake can be targeted in a PD model, decrease the rate of TH loss in a calcium-dependent manner, and attenuate locomotor behavior associated with 6-OHDA lesion. Given that detection of reliable PD markers will eventually be employed in susceptible populations, our results give credence to the possibility that increasing glutamate uptake may prolong the time period before locomotor impairment occurs.  相似文献   

4.
5.
Osteoporosis, arthritis, Peget's disease, bone tumor, periprosthetic joint infection, and periprosthetic loosening have a common characteristic of osteolysis, which is characterized by the enhanced osteoclastic bone resorptive function. At present, the treatment target of these diseases is to interfere with osteoclastic formation and function. Scutellarein (Scu), a flavonoids compound, can inhibit the progress of tumor and inflammation. However, the role of Scu in inflammatory osteolysis isn’t elucidated clearly. Our study showed that Scu inhibited bone destruction induced by LPS in vivo and OC morphology and function induced by RANKL in vitro. Mechanistic studies revealed that Scu suppressed osteoclastic marker gene expression by RANKL-induced, such as Ctsk9, Mmp9, Acp5, and Atp6v0d2. In addition, we found that the inhibition effects of osteoclastogenesis and bone resorption function of Scu were mediated via attenuating NF-κB and NFAT signaling pathways. In conclusion, the results showed that Scu may become a potential new drug for the treatment of inflammatory osteolysis.  相似文献   

6.
7.
B Gmeiner  C Seelos 《FEBS letters》1989,255(2):395-397
Treatment of L-tyrosine in a peroxidase/H2O2 system results in the formation of dityrosine. However, the phosphoester derivative of tyrosine, O-phospho-L-tyrosine, was unable to form dityrosine even in mixtures with free L-tyrosine. Dephosphorylation of O-phospho-L-tyrosine by alkaline phosphatase followed by horseradish peroxidase/H2O2 treatment resulted in the formation of dityrosine. Our in vitro results indicate that phosphorylation/dephosphorylation of L-tyrosine may regulate dityrosine formation, and is supposed to play an important role in protein-protein interactions, i.e. cross-linking.  相似文献   

8.
Osteoclasts are multinuclear giant cells responsible for bone resorption in bone loss diseases, including rheumatoid arthritis, periodontitis, and the aseptic loosening of orthopedic implants. Because of injurious side effects with currently available drugs, it is necessary to continue research novel bone-protective therapies. Daidzin, a naturally occurring isoflavone found in leguminous plants, has numerous beneficial pharmacologic effects, including anti-cancer, anti-cholesterol, and anti-angiocardiopathy, promoting osteoblasts differentiation, and even anti-osteoporosis. However, the effect of daidzin on the regulation of osteoclast activity has not yet been investigated. In this study, our study showed that daidzin significantly inhibited receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclast differentiation of bone marrow macrophages and the hydroxyapatite-resorbing activity of mature osteoclasts by inhibiting RANKL-induced NF-kB signaling pathway. In addition, daidzin could inhibit the expression of osteoclast marker genes, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), cellular oncogene fos (c-Fos), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK). Consistent with in vitro results, daidzin inhibited lipopolysaccharide-induced bone loss by suppressing the osteoclast differentiation. Together our data demonstrated that daidzin inhibits RANKL-induced osteoclastogenesis through suppressing NF-ĸB signaling pathway and that daidzin is a promising agent in the treatment of osteolytic diseases.  相似文献   

9.
10.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

11.
Serofendic acid was recently identified as a neuroprotective factor from fetal calf serum. This study was designed to evaluate the neuroprotective effects of an intranigral microinjection of serofendic acid based on behavioral, neurochemical and histochemical studies in hemi-parkinsonian rats using 6-hydroxydopamine (6-OHDA). Rats were injected with 6-OHDA in the presence or absence of serofendic acid, or were treated with serofendic acid on the same lateral side, at 12, 24 or 72 h after 6-OHDA lesion. Intranigral injection of 6-OHDA alone induced a massive loss of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra pars compacta (SNpc). Either simultaneous or 12 h post-administration of serofendic acid significantly prevented both dopaminergic neurodegeneration and drug-induced rotational asymmetry. Immunoreactivities for oxidative stress markers, such as 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE), were markedly detected in the SNpc of rats injected with 6-OHDA alone. These immunoreactivities were markedly suppressed by the co-administration of serofendic acid, similar to the results in vehicle-treated control rats. In addition, serofendic acid inhibited 6-OHDA-induced alpha-synuclein expression and glial activation in the SNpc. These results suggest that serofendic acid protects against 6-OHDA-induced SNpc dopaminergic neurodegeneration in a rat model of Parkinson's disease.  相似文献   

12.
Beta-carbolines have been suggested to be involved in the pathogenesis of Parkinson's disease as a result of their structural similarity to the neurotoxin N -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The chloral-derived beta-carboline derivative 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) causes cell loss in neuronal and glial cell cultures and induces a slowly developing neurodegenerative process in rats. In our experiments, effects of TaClo and its derivatives 2-methyl-TaClo (2-Me-TaClo), and 1-dichloromethylene-1,2,3,4-tetrahydro-beta-carboline (1-CCl(2) -THbetaC) on tyrosine hydroxylase (TH) activity were investigated in TH assays using homogenate preparations of the rat nucleus accumbens and recombinant human TH (hTH1). TH activity was determined in vitro by measuring l-DOPA production with HPLC-ECD. Using homogenate preparations, TaClo, 2-Me-TaClo, and 1-CCl(2) -THbetaC inhibited TH in concentrations of 0.1 mm, while 1-CCl(2) -THbetaC in low concentrations enhanced TH activity. When TH was activated by PACAP-27, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC also inhibited activated enzyme activity in high concentrations. However, in the case of 2-Me-TaClo and 1-CCl(2) -THbetaC a biphasic effect was observed with a marked increase of TH activity in the nanomolar range. In our experiments using recombinant hTH1, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC did not modify enzyme activity. After activation of hTH1 by PKA all the tetrahydro-beta-carbolines investigated in this study decreased l-DOPA formation. We suggest that these beta-carbolines modulate dopamine synthesis by interacting with a protein kinase TH-activating system.  相似文献   

13.
14.
[6]-Gingerol, a naturally occurring plant phenol, is one of the major components of fresh ginger (Zingiber officinale Roscoe, Zingiberaceae) and has diverse pharmacologic effects. Here, we describe its novel anti-oxidant, anti-apoptotic, and anti-inflammatory activities in vitro and in vivo. In vitro, pre-treatment with [6]-gingerol reduced UVB-induced intracellular reactive oxygen species levels, activation of caspase-3, -8, -9, and Fas expression. It also reduced UVB-induced expression and transactivation of COX-2. Translocation of NF-kappaB from cytosol to nucleus in HaCaT cells was inhibited by [6]-gingerol via suppression of IkappaBalpha phosphorylation (ser-32). Examination by EMSAs and immunohistochemistry showed that topical application of [6]-gingerol (30 microM) prior to UVB irradiation (5 kJ/m(2)) of hairless mice, also inhibited the induction of COX-2 mRNA and protein, as well as NF-kappaB translocation. These results suggest that [6]-gingerol could be an effective therapeutic agent providing protection against UVB-induced skin disorders.  相似文献   

15.
16.
[6]-Gingerol, a naturally occurring plant phenol, is one of the major components of fresh ginger (Zingiber officinale Roscoe, Zingiberaceae) and has diverse pharmacologic effects. Here, we describe its novel anti-oxidant, anti-apoptotic, and anti-inflammatory activities in vitro and in vivo. In vitro, pre-treatment with [6]-gingerol reduced UVB-induced intracellular reactive oxygen species levels, activation of caspase-3, -8, -9, and Fas expression. It also reduced UVB-induced expression and transactivation of COX-2. Translocation of NF-κB from cytosol to nucleus in HaCaT cells was inhibited by [6]-gingerol via suppression of IκBα phosphorylation (ser-32). Examination by EMSAs and immunohistochemistry showed that topical application of [6]-gingerol (30 μM) prior to UVB irradiation (5 kJ/m2) of hairless mice, also inhibited the induction of COX-2 mRNA and protein, as well as NF-κB translocation. These results suggest that [6]-gingerol could be an effective therapeutic agent providing protection against UVB-induced skin disorders.  相似文献   

17.
18.
19.
Bone is a highly vascularized organ, thus angiogenesis is a vital process during bone remodeling. However, the role of vascular systems in bone remodeling is not well recognized. Here we show that netrin-4 inhibits osteoclast differentiation in vitro and in vivo. Co-cultures of bone marrow macrophages with vascular endothelial cells markedly inhibited osteoclast differentiation. Adding a neutralizing antibody, or RNA interference against netrin-4, restored in vitro osteoclast differentiation. Administration of netrin-4 prevented bone loss in an osteoporosis mouse model by decreasing the osteoclast number. We propose that vascular endothelial cells interact with bone in suppressing bone through netrin-4.  相似文献   

20.
Indole-3-carbinol (I3C) is a phytochemical (derived from broccoli, cabbage, and other cruciferous vegetables) with proven anticancer efficacy including the reduction of cervical intraepithelial neoplasia (CIN) and its progression to cervical cancer. In a breast cancer cell line, I3C inhibited cell adhesion, spreading, and invasion associated with an upregulation of the tumor suppressor gene PTEN, suggesting that PTEN is important in inhibition of late stages in the development of cancer. The goal of this study was to determine the expression of PTEN during the development of cervical cancer and whether I3C affected expression of PTEN in vivo. We show diminished PTEN expression during the progression from low-grade to high-grade cervical dysplasia in humans and in a mouse model for cervical cancer, the K14HPV16 transgenic mice promoted with estrogen. The implication is that loss of PTEN function is required for this transition. Additionally, dietary I3C increased PTEN expression in the cervical epithelium of the transgenic mouse, an observation that suggests PTEN upregulation by I3C is one mechanism by which I3C inhibits development of cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号