首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Note on Bile Acids Transformations by Strains of Bifidobacterium   总被引:3,自引:0,他引:3  
The hydrolysis of sodium taurocholate and glycocholate was a common feature among 52 strains from 14 species belonging to the genus Bifidobacterium. Forty-eight strains were able to hydrolyse both these conjugated bile acids, yet four strains failed to split the amide bond of either. Twenty-eight strains were checked for the ability to transform sodium cholate, chenodeoxycholate, deoxycholate and lithocholate; only 13 of these strains formed minimal quantities of monochetoderivatives from cholic acid, while none of them was able to transform the other tested bile acids.  相似文献   

2.
H Igimi 《Life sciences》1976,18(9):993-999
Bile acid composition was investigated in normal gallbladder-bile collected from the Japanese patients suffering from the diseases other than hepatobiliary tracts.In addition to cholate, chenodeoxycholate, deoxycholate and lithocholate, ursodeoxycholate was detected as a predominant bile acid in all cases tested and its quantity was higher than that of lithocholate in most cases.A simplified method has been developed for the quantitative determination of bile acids. They were derived to their methyl ester-trimethylsilyl ethers and determined by gas-liquid chromatography on a column of 3% poly-phenyldiethanol amine succinate-80-100 mesh Chromosorb WHP. Average recoveries of added amounts of standard bile acids were found to range from 97 to 100%.  相似文献   

3.
The derivatization of bile acids into trimethylsilyl ether isobutyl ester (IBTMS) and of neutral sterols into trimethylsilyl ether (TMS) allowed the separation on an OV-1 capillary gas chromatography column of 15 bile steroids as follows: cholesterol, 7 alpha-hydroxycholesterol, 6 beta-hydroxycholesterol, 6 alpha-hydroxycholesterol, 7 beta-hydroxycholesterol, lithocholate, deoxycholate, 25-hydroxycholesterol, chenodeoxycholate, cholate, murocholate, hyodeoxycholate, ursodeoxycholate, hyocholate, and beta-muricholate. Fragmentation data of the coupled gas chromatographic-mass spectrometric (GC-MS) analysis of these nine bile acids as IBTMS derivatives under electron impact and chemical ionizations (methane, isobutane, and ammonia) are given. The ammonia chemical ionization appears to be the best mode for compound identification and quantitation due to fragmentations into high mass ions. The comparison of methylene units of the five sterols as TMS derivatives and of each type of methyl, TMS, or isobutyl ester of the nine bile acids as TMS ethers showed that isobutyl esterification increased dramatically the retention time of the bile acids, allowing their separation after the neutral sterols. Different methods of GC-MS analysis were applied to the study of bile steroid secretion in long-term rat liver epithelial cell lines, either serum-supplemented cell lines or serum-free cell lines, growing in serum-free medium since the primary explanation or after adaptation of serum-supplemented lines to this medium. It is demonstrated for the first time that liver epithelial cell lines maintain the metabolic pathway leading from synthesized cholesterol to dioxygenated sterols and the two normal main primary bile acids of the liver, chenodeoxycholic acid and cholic acid, up to 32-47% of the in vivo daily rate, and in addition the production of alpha-muricholic acid, the bile acid marker of murine liver.  相似文献   

4.
Glutathione S-transferases are a complex family of dimeric proteins that play a dual role in cellular detoxification; they catalyse the first step in the synthesis of mercapturic acids, and they bind potentially harmful non-substrate ligands. Bile acids are quantitatively the major group of ligands encountered by the glutathione S-transferases. The enzymes from rat liver comprise Yk (Mr 25 000), Ya (Mr 25 500), Yn (Mr 26 500), Yb1, Yb2 (both Mr 27 000) and Yc (Mr 28 500) monomers. Although bile acids inhibited the catalytic activity of all transferases studied, the concentration of a particular bile acid required to produce 50% inhibition (I50) varies considerably. A comparison of the I50 values obtained with lithocholate (monohydroxylated), chenodeoxycholate (dihydroxylated) and cholate (trihydroxylated) showed that, in contrast with all other transferase monomers, the Ya subunit possesses a relatively hydrophobic bile-acid-binding site. The I50 values obtained with lithocholate and lithocholate 3-sulphate showed that only the Ya subunit is inhibited more effectively by lithocholate than by its sulphate ester. Other subunits (Yk, Yn, Yb1 and Yb2) were inhibited more by lithocholate 3-sulphate than by lithocholate, indicating the existence of a significant ionic interaction, in the bile-acid-binding domain, between (an) amino acid residue(s) and the steroid ring A. By contrast, increasing the assay pH from 6.0 to 7.5 decreased the inhibitory effect of all bile acids studied, suggesting that there is little significant ionic interaction between transferase subunits and the carboxy group of bile acids. Under alkaline conditions, low concentrations (sub-micellar) of nonsulphated bile acids activated Yb1, Yb2 and Yc subunits but not Yk, Ya and Yn subunits. The diverse effects of the various bile acids studied on transferase activity enables these ligands to be used to help establish the quaternary structure of individual enzymes. Since these inhibitors can discriminate between transferases that appear to be immunochemically identical (e.g. transferases F and L), bile acids can provide information about the subunit composition of forms that cannot otherwise be distinguished.  相似文献   

5.
Major conjugated bile acids of human bile have been resolved by high-pressure liquid chromatography. The elutions are carried out in two stages on Corasil II or μPorasil columns; first, an alkaline solvent system (2-propanol/ethyl acetate/water/7n ammonium hydroxide, 260:600:50:3) was used for separation into groups: tauro-dihydroxy derivatives, taurocholate, glyco-dihydroxy derivatives, and glycocholate. The fraction containing glyco-dihydroxy conjugates was separated by rechromatography in acetonitrile/acetic acid, 400:10, and the fraction containing tauro-dihydroxy conjugates could be partially resolved by rechromatography in acetonitrile/acetic acid/formic acid (97%)/water, 500:10:5:10. Three samples of prepared human bile have been similarly treated.  相似文献   

6.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

7.
Bile acids are synthesized de novo in the liver from cholesterol and conjugated to glycine or taurine via a complex series of reactions involving multiple organelles. Bile acids secreted into the small intestine are efficiently reabsorbed and reutilized. Activation by thioesterification to CoA is required at two points in bile acid metabolism. First, 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid, the 27-carbon precursor of cholic acid, must be activated to its CoA derivative before side chain cleavage via peroxisomal beta-oxidation. Second, reutilization of cholate and other C24 bile acids requires reactivation prior to re-conjugation. We reported previously that homolog 2 of very long-chain acyl-CoA synthetase (VLCS) can activate cholate (Steinberg, S. J., Mihalik, S. J., Kim, D. G., Cuebas, D. A., and Watkins, P. A. (2000) J. Biol. Chem. 275, 15605-15608). We now show that this enzyme also activates chenodeoxycholate, the secondary bile acids deoxycholate and lithocholate, and 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. In contrast, VLCS activated 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoate, but did not utilize any of the C24 bile acids as substrates. We hypothesize that the primary function of homolog 2 is in the reactivation and recycling of C24 bile acids, whereas VLCS participates in the de novo synthesis pathway. Results of in situ hybridization, topographic orientation, and inhibition studies are consistent with the proposed roles of these enzymes in bile acid metabolism.  相似文献   

8.
The effect of the bile salts, sodium cholate, deoxycholate, glycocholate and taurocholate, on the solubility in aqueous solution of the hydrophobic, environmental mutagen, 1,8-dinitropyrene (DNP), was examined. In the absence of bile salts, the DNP appeared to precipitate out of solution, whereas bile salts at a concentration of greater than or equal to 4 mM maintained the DNP in solution. In the presence of the model dietary fiber, alpha-cellulose, the DNP absorbed to this preferentially. Bile salts reduced this adsorption at low alpha-cellulose levels, but had little effect at high alpha-cellulose levels. The implication of these results is that bile salts have solubilising properties that could affect the distribution of hydrophobic molecules, including mutagens, in the digestive tract.  相似文献   

9.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

10.
The effects of four bile acids on cell Ca2+ were examined in suspensions of isolated rat hepatocytes. Taurolithocholate and lithocholate which inhibit bile secretion increased the cytosolic Ca2+ concentration (ED50, 25 microM), as measured by the fluorescent indicator quin2, and promoted a net loss of Ca2+ from the cells. This effect resulted from rapid mobilization of Ca2+ from an intracellular Ca2+ store. This store corresponds to the one that is permeabilized by the inositol (1,4,5)trisphosphate-dependent hormone vasopressin. However, taurolithocholate and lithocholate, unlike the hormone, did not induce a significant accumulation of inositol trisphosphate fraction in isolated hepatocytes. In addition, these agents did not alter the cell and the mitochondria membrane permeability to ions. When applied to saponin-permeabilized cells, taurolithocholate and lithocholate released Ca2+ (ED50, 20 microM) from an ATP-dependent, nonmitochondrial pool which is sensitive to inositol (1,4,5)trisphosphate. In contrast, the bile acids taurocholate and cholate, which increase bile secretion, had no effect on cell Ca2+ in intact hepatocytes or in saponin-permeabilized hepatocytes. It is suggested that taurolithocholate and lithocholate permeabilize the endoplasmic reticulum to Ca2+ and that the resulting permeabilization of this compartment may be involved in the inhibition of bile secretion in mammalian liver.  相似文献   

11.
The binding of the fluorescent probes 1-anilino-8-naphthalene sulfonate and dansyl cadaverine to the sodium salts of cholic, deoxycholic and dehydrocholic acids has been investigated. Enhanced probe solubilisation accompanies aggregation. Monitoring of fluorescence intensities as a function of bile salt concentration permits the detection of primary micelle formation, as well as secondary association. The transition concentrations obtained by fluorescence are in good agreement with values determined for the critical micelle concentrations, by other methods. Differences in the behaviour of cholate and deoxycholate have been noted. Fluorescence polarisation studies of 1,6-diphenyl-1,3,5-hexatriene solubilised in bile salt micelles suggest a higher microviscosity for the interior of the deoxycholate micelle as compared to cholate. 1H NMR studies of deoxycholate over the range 1–100 mg/ml suggest that micelle formation leads to a greater immobilisation of the C18 and C19 methyl groups as compared to the C21 methyl group. Well resolved 13C resonances are observed for all three steroids even at high concentration. Both fluorescence and NMR studies confirm that dehydrocholate does not aggregate.  相似文献   

12.
A procedure for the purification of the enzyme bile acid:CoA ligase from guinea pig liver microsomes was developed. Activity toward chenodeoxycholate, cholate, deoxycholate, and lithocholate co-purified suggesting that a single enzyme form catalyzes the activation of all four bile acids. Activity toward lithocholate could not be accurately assayed during the earlier stages of purification due to a protein which interfered with the assay. The purified ligase had a specific activity that was 333-fold enriched relative to the microsomal cell fraction. The purification procedure successfully removed several enzymes that could potentially interfere with assay procedures for ligase activity, i.e. ATPase, AMPase, inorganic pyrophosphatase, and bile acid-CoA thiolase. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified ligase gave a single band of approximately 63,000 Mr. A molecular size of 116,000 +/- 4,000 daltons was obtained by radiation inactivation analysis of the ligase in its native microsomal environment, suggesting that the functional unit of the ligase is a dimer. The purified enzyme was extensively delipidated by adsorption to alumina. The delipidated enzyme was extremely unstable but could be partially stabilized by the addition of phospholipid vesicles or detergent. However, such additions did not enhance enzymatic activity. Kinetic analysis revealed that chenodeoxycholate, cholate, deoxycholate, and lithocholate were all relatively good substrates for the purified enzyme. The trihydroxy bile acid cholate was the least efficient substrate due to its relatively low affinity for the enzyme. Bile acid:CoA ligase could also be solubilized from porcine liver microsomes and purified 180-fold by a modification of the above procedure. The final preparation contains three polypeptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three peptides range in size from 50,000 to 59,000, somewhat smaller than the guinea pig enzyme. The functional size of the porcine enzyme in its native microsomal environment was determined by the technique of radiation inactivation analysis to be 108,000 +/- 5,000 daltons. Thus, the functional form of the porcine enzyme also appears to be a dimer.  相似文献   

13.
Dihydrotestosterone glucuronide (DHTG), a series of 5 alpha-bile acids, or allo-bile acids (3 alpha-hydroxy-5 alpha-cholanic acid, 3-keto-5 alpha-cholanic acid and 3 beta-hydroxy-5 alpha-cholanic acid) and their normal bile acid analogues (3 alpha-hydroxy-5 beta-cholanic acid or lithocholate, 3-keto-5 beta-cholanic acid and 3 beta-hydroxy-5 beta-cholanic acid) were administered intravenously to female rats in order to determine their effects on bile flow. All agents caused a rapid and profound inhibition of bile flow which was dose-dependent. The logarithm of the dose vs the cholestatic response curve for DHTG, the allo-bile acids and lithocholate were all parallel. DHTG was the most potent congener and was two times more potent than 3-keto-5 alpha-cholanic acid and 5 times more potent than lithocholate. These data indicate that the glucuronic acid moiety and the trans configuration of the A and B rings of the steroid nucleus confer the greatest cholestatic potency.  相似文献   

14.
Glycine and taurine conjugates of bile acids modulate gamma-glutamyl transpeptidase by interacting with the cysteinylglycine binding site (acceptor site) of the enzyme. These compounds stimulate hydrolysis of glutamine and S-methylglutathione and the rate of the inactivation of the enzyme by the gamma-glutamyl site-directed reagent, AT-125 (L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). Transpeptidation between S-methylglutathione and methionine was inhibited by these compounds. These effects resemble those caused by hippurate; the glycine derivatives of bile acids, however, exhibit a much greater affinity for transpeptidase than hippurate. Cholate, as shown previously for benzoate, also seems to bind to a portion of the acceptor site as indicated by its effects on S-methylglutathione utilization and AT-125-dependent inactivation of the enzyme. The Kd values for cholate and benzoate are, however, at least one order of magnitude larger than those for their respective glycine derivatives. The acceptor site-directed modulators increase the affinity of the enzyme for AT-125 and kinetic and binding studies show that binding of gamma-glutamyl site-directed reagents increases the affinity of the enzyme for cholate. These results thus indicate cooperative interactions between the gamma-glutamyl donor and acceptor binding domains of the transpeptidase active center.  相似文献   

15.
We have used fluorescent derivatives of the choleretic bile salts cholate and chenodeoxycholate, the cholestatic salt lithocholate, and the therapeutic agent ursodeoxycholate to visualize distinct routes of transport across the hepatocyte and delivery to the canalicular vacuole of isolated hepatocyte couplets. The cholate and chenodeoxycholate derivatives produced homogeneous intracellular fluorescence and were rapidly transported to the vacuole, while the lithocholate analogue accumulated more slowly in the canalicular vacuole and gave rise to punctate fluorescence within the cell. Fluorescent ursodeoxycholate showed punctate intracellular fluorescence against a high uniform background indicating use of both pathways. Inhibition of vesicular transport by treatment with colchicine and Brefeldin A had no effect on the uptake of any of the compounds used, but it dramatically impaired delivery of both the lithocholate and the ursodeoxycholate derivatives to the canalicular vacuole. We conclude that while the chenodeoxycholate and cholate analogues traverse the hepatocyte by a cytoplasmic route, lithocholate and ursodeoxycholate analogues are transported by vesicle-mediated transcytosis. Treatment of couplets with glycine derivatives of lithocholate and ursodeoxycholate, but not cholate or chenodeoxycholate, led to a marked relocalization of annexin II, which initially became concentrated at the basolateral membrane, then moved to a perinuclear distribution and finally to the apical membrane as the incubation progressed. This suggests that lithocholate and ursodeoxycholate treatment leads to a rapid induction of transcytosis and that annexin II exchange occurs upon membrane fusion at all stages of the hepatocyte transcytotic pathway. These results indicate that isolated hepatocyte couplets may provide an inducible model system for the study of vesicle-mediated transcytosis.  相似文献   

16.
The mobilities of coenzyme A and coenzyme A derivatives of cholate, chenodeoxycholate, deoxycholate, lithocholate, and their 5 alpha analogs were studied in reversed-phase high-performance liquid chromatography. With a C18 Radial-PAK A cartridge (10-micron particles) and a solvent mixture of 2-propanol/10 mM phosphate buffer (pH 7.0, 140:360), separation of the chenodeoxycholyl and deoxycholyl coenzyme A derivatives was not observed. An increase in ionic strength of the buffer to 50 mM afforded separation, which was markedly augmented with a C18 Radial-PAK A cartridge with 5-micron particles. Lowering the pH of the buffer to 5.5 did not materially change the separations regardless of the ionic strength. Quantitation was carried out to a lower level of 8.5 X 10(-12) mol.  相似文献   

17.
A specific fatty acid binding protein was isolated from Giardia lamblia, using an affinity column with butyric acid acting as a ligand in place of stearic acid. This method has proved to be more efficient than the one previously described using stearic acid as ligand. The purified fraction showed 8 electrophoretic bands of proteins, with molecular weights ranging between 8 and 80 kDa. This pattern is a consequence of the aggregation of a protein with a molecular weight of 8,215 Da, corresponding to the lower molecular weight band, the only one capable of binding to fatty acids. The labeled oleic acid bound to these purified proteins was replaced by a 100-fold greater concentration of taurocholate, glycocholate, deoxycholate, palmitic acid, and arachidonic acid, having a greater displacement of the bile salts than the free fatty acids.  相似文献   

18.
Using three different assay systems, we have discovered a heretofore unrecognized antioxidant property of bile acids at physiological concentrations. Bile acids inhibit peroxidation of the polyunsaturated lipid, linoleic acid, and of the highly fluorescent protein phycoerythrin. In part, the antioxidant activity results from scavenging of peroxyl radicals by direct oxidation of the bile acids. The most abundant products of the reaction of cholate and chenodeoxycholate with peroxyl radicals were studied in detail and shown to be the keto derivatives formed by oxidation of the 7 alpha-hydroxyl groups. Paradoxically, at linoleate concentrations higher than 1-2 mM, glycocholate up to approximately 10-14 mM enhances lipid peroxidation and inhibits only at higher concentrations. These findings may prove important in understanding the etiology of certain disease states of the biliary tract and intestine where lipid peroxidation may be involved and in providing a rationale for the positive epidemiological correlation between high lipid intake and higher fecal bile acid output and colon cancer.  相似文献   

19.
1. Analysis of bile salts of four snakes of the subfamily Viperinae showed that their bile acids consisted mainly of C-23-hydroxylated bile acids. 2. Incubations of 14C-labelled sodium cholate (3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oate) and deoxycholate (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oate) with whole and fractionated adder liver homogenates were carried out in the presence of molecular oxygen and NADPH or an NADPH-generating system. The formation of C-23-hydroxylated bile acids, namely bitocholic acid (3 alpha, 12 alpha, 23xi-trihydroxy-5 beta-cholan-24-oic acid) and 3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-cholanic acid (3 alpha, 7 alpha, 12 alpha, 23 xi-tetrahydroxy-5 beta-cholan-24-oic acid), was observed mainly in the microsomal fraction and partly in the mitochondrial fraction. 3. Biosynthetic pathways of C-23-hydroxylated bile acids are discussed.  相似文献   

20.
A method has been developed for easy sampling of duodenal bile acids. For this purpose Entero-Test was used, an encapsulated nylon thread originally used to estimate enteral parasites. This capsule is swallowed by a fasting subject and one end of the thread is taped at a corner of the month. Four hours after swallowing the thread, it is withdrawn and bile acids are eluted with buffer. The solution is applied to a Sep-Pak C18 cartridge to extract bile acids, which are subsequently analyzed by capillary gas-liquid chromatography and liquid chromatography. In vitro analyses showed that there was no preferential binding to the thread of any bile acid and that binding was pH-independent. A high correlation (r = 0.98) was found between direct analyses of bile and analyses by Entero-Test after in vitro incubation. The values obtained by the Entero-Test were similar to those of duodenal bile simultaneously collected with the normal intubation technique (r = 0.99). Duodenal bile acid composition showed a daily variation. In 11 healthy volunteers the following bile acid composition of unstimulated duodenal juice was found (mean +/- SD; %): choleate 44 +/- 12 (glycine/taurine ratio 1.8), chenodeoxycholate: 29 +/- 6 (G/T ratio 2.3); deoxycholate: 25 +/- 11 (G/T ratio 5.7), lithocholate: 1, ursodeoxycholate: less than 1. The described technique turned out to be an easily applicable method for determination of duodenal bile acids in man. This enables longitudinal studies concerning the factors that determine the bile acid pool composition and its relevance to various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号