首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we found that ectopic expression of STAP-2 inhibited Epstein-Barr virus (EBV) LMP1-mediated NF-kappaB signaling and interleukin-6 expression. Indeed, STAP-2 associated with LMP1 through its PH and SH2-like domains, and these proteins interacted with each other in EBV-positive human B cells. We found, furthermore, that STAP-2 regulated LMP1-mediated NF-kappaB signaling through direct or indirect interactions with the tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and TNFR-associated death domain (TRADD) proteins. STAP-2 mRNA was induced by the expression of LMP1 in human B cells. Furthermore, transient expression of STAP-2 in EBV-positive human B cells decreased cell growth. Finally, STAP-2 knockout mouse embryonic fibroblasts showed enhanced LMP1-induced cell growth. These results suggest that STAP-2 acts as an endogenous negative regulator of EBV LMP1-mediated signaling through TRAF3 and TRADD.  相似文献   

2.
Zeng H  Di L  Fu G  Chen Y  Gao X  Xu L  Lin X  Wen R 《Molecular and cellular biology》2007,27(14):5235-5245
Bcl10 (B-cell lymphoma 10) is an adaptor protein comprised of an N-terminal caspase recruitment domain and a C-terminal serine/threonine-rich domain. Bcl10 plays a critical role in antigen receptor-mediated NF-kappaB activation and lymphocyte development and functions. Our current study has discovered that T-cell activation induced monophosphorylation and biphosphorylation of Bcl10 and has identified S138 within Bcl10 as one of the T-cell receptor-induced phosphorylation sites. Alteration of S138 to an alanine residue impaired T-cell activation-induced ubiquitination and subsequent degradation of Bcl10, ultimately resulting in prolongation of TCR-mediated NF-kappaB activation and enhancement of interleukin-2 production. Taken together, our findings demonstrate that phosphorylation of Bcl10 at S138 down-regulates Bcl10 protein levels and thus negatively regulates T-cell receptor-mediated NF-kappaB activation.  相似文献   

3.
Zhu G  Wu CJ  Zhao Y  Ashwell JD 《Current biology : CB》2007,17(16):1438-1443
NF-kappaB essential modulator (NEMO), the regulatory subunit of the IkappaB kinase (IKK) that activates NF-kappaB, is essential for NF-kappaB activation. NEMO was recently found to contain a region that preferentially binds Lys (K)63-linked but not K48-linked polyubiquitin (polyUb) chains, and the ability of NEMO to bind to K63-linked polyUb RIP (receptor-interacting protein) is necessary for efficient tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. Optineurin is a homolog of NEMO, and mutations in the optineurin gene are found in a subset of patients with glaucoma, a neurodegenerative disease involving the loss of retinal ganglion cells. Although optineurin shares considerable homology with NEMO, in resting cells, it is not present in the high-molecular-weight complex containing IKKalpha and IKKbeta, and optineurin cannot substitute for NEMO in lipopolysaccharide (LPS)-induced NF-kappaB activation. On the other hand, the overexpression of optineurin blocks the protective effect of E3-14.7K on cell death caused by the overexpression of TNFalpha receptor 1 (TNFR1). Here we show that optineurin has a K63-linked polyUb-binding region similar to that of NEMO, and like NEMO, it bound K63- but not K48-linked polyUb. Optineurin competitively antagonized NEMO's binding to polyUb RIP, and its overexpression inhibited TNFalpha-induced NF-kappaB activation. This competition occurs at physiologic protein levels because microRNA silencing of optineurin resulted in markedly enhanced TNFalpha-induced NF-kappaB activity. These results reveal a physiologic role for optineurin in dampening TNFalpha signaling, and this role might provide an explanation for its association with glaucoma.  相似文献   

4.
5.
Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-κB and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB5 subtilase cytotoxin reproduced the suppressive effects of GGA. Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.  相似文献   

6.
Calcineurin negatively regulates TLR-mediated activation pathways   总被引:2,自引:0,他引:2  
In innate immunity, microbial components stimulate macrophages to produce antimicrobial substances, cytokines, other proinflammatory mediators, and IFNs via TLRs, which trigger signaling pathways activating NF-kappaB, MAPKs, and IFN response factors. We show in this study that, in contrast to its activating role in T cells, in macrophages the protein phosphatase calcineurin negatively regulates NF-kappaB, MAPKs, and IFN response factor activation by inhibiting the TLR-mediated signaling pathways. Evidence for this novel role for calcineurin was provided by the findings that these signaling pathways are activated when calcineurin is inhibited either by the inhibitors cyclosporin A or FK506 or by small interfering RNA-targeting calcineurin, and that activation of these pathways by TLR ligands is inhibited by the overexpression of a constitutively active form of calcineurin. We further found that IkappaB-alpha degradation, MAPK activation, and TNF-alpha production by FK506 were reduced in macrophages from mice deficient in MyD88, Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF), TLR2, or TLR4, whereas macrophages from TLR3-deficient or TLR9 mutant mice showed the same responses to FK506 as those of wild-type cells. Biochemical studies indicate that calcineurin interacts with MyD88, TRIF, TLR2, and TLR4, but not with TLR3 or TLR9. Collectively, these results suggest that calcineurin negatively regulates TLR-mediated activation pathways in macrophages by inhibiting the adaptor proteins MyD88 and TRIF, and a subset of TLRs.  相似文献   

7.
8.
9.
10.
Zhang Y  Ma CJ  Wang JM  Ji XJ  Wu XY  Jia ZS  Moorman JP  Yao ZQ 《PloS one》2011,6(5):e19664
T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection.  相似文献   

11.
12.
13.
Activation of the oncogenic potential of the MEK kinase TPL-2 (Cot) requires deletion of its C terminus. This mutation also weakens the interaction of TPL-2 with NF-kappaB1 p105 in vitro, although it is unclear whether this is important for the activation of TPL-2 oncogenicity. It is demonstrated here that TPL-2 stability in vivo relies on its high-affinity, stoichiometric association with NF-kappaB1 p105. Formation of this complex occurs as a result of two distinct interactions. The TPL-2 C terminus binds to a region encompassing residues 497 to 534 of p105, whereas the TPL-2 kinase domain interacts with the p105 death domain. Binding to the p105 death domain inhibits TPL-2 MEK kinase activity in vitro, and this inhibition is significantly augmented by concomitant interaction of the TPL-2 C terminus with p105. In cotransfected cells, both interactions are required for inhibition of TPL-2 MEK kinase activity and, consequently, the catalytic activity of a C-terminally truncated oncogenic mutant of TPL-2 is not affected by p105. Thus, in addition to its role as a precursor for p50 and cytoplasmic inhibitor of NF-kappaB, p105 is a negative regulator of TPL-2. Insensitivity of C-terminally truncated TPL-2 to this regulatory mechanism is likely to contribute to its ability to transform cells.  相似文献   

14.
Epithelial cells detect motile pathogens via TLR5 ligation of flagellin, resulting in rapid induction of antibacterial/proinflammatory gene expression. Although such flagellin-induced gene expression is quite transient, likely to avoid the negative consequences of inflammation, little is known regarding the molecular mechanisms that mediate its shutdown. We hypothesized that, analogous to the case for TLR4, phosphoinositide 3-kinase (PI3K) might negatively regulate TLR5 signaling. However, because PI3K is an essential positive mediator of some pathways of TLR-mediated gene expression, the opposite hypothesis was also considered. Herein, we observed that flagellin stimulation of epithelial cells indeed induced rapid (<30 min) PI3K activation, as evidenced by Akt phosphorylation, via a TLR5-mediated mechanism. Blockade of PI3K with wortmannin resulted in marked enhancement of flagellin-induced gene expression as assessed by measuring levels of inducible NO synthase, IL-6, and IL-8. Such enhancement of gene expression by PI3K inhibition correlated with prolonged activation of MAPK (p38 and ERK1/2) and was ablated under MAPK inhibition. Such effect of inhibiting PI3K with wortmannin was mimicked by the PI3K inhibitor LY294002, and, conversely, a constitutively active PI3K prevented p38 activation in response to flagellin. Last, to test the significance of these results in vivo, we measured flagellin-induced gene expression in PI3K knockout mice. PI3K-null mice displayed increased levels of flagellin-induced serum IL-6, KC (IL-8 homolog), and nitrite as compared with heterozygous littermates. Thus, TLR5's rapid activation of PI3K serves to limit MAPK signaling, thus limiting proinflammatory gene expression and reducing the potential negative consequences of proinflammatory gene expression.  相似文献   

15.
Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation.Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR)γ are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPARγ target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD+ concentration was observed. Interestingly, LXR activation decreased the PPARγ-induced visfatin gene and protein secretion in human macrophages.Our results identify visfatin as a gene oppositely regulated by the LXR and PPARγ pathways in human macrophages.  相似文献   

16.
17.
In this study, we examined the regulation of NF-kappaB activation and IL-8/CXCL8 expression by thrombin in human lung epithelial cells (EC). Thrombin caused a concentration-dependent increase in IL-8/CXCL8 release in a human lung EC line (A549) and primary normal human bronchial EC. In A549 cells, thrombin, SFLLRN-NH2 (a protease-activated receptor 1 (PAR1) agonist peptide), and GYPGQV-NH2 (a PAR4 agonist peptide), but not TFRGAP-NH2 (a PAR3 agonist peptide), induced an increase in IL-8/CXCL8-luciferase (Luc) activity. The thrombin-induced IL-8/CXCL8 release was attenuated by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (a thrombin inhibitor), U73122 (a phosphoinositide-phospholipase C inhibitor), Ro-32-0432 (a protein kinsase C alpha (PKC alpha) inhibitor), an NF-kappaB inhibitor peptide, and Bay 117082 (an IkappaB phosphorylation inhibitor). Thrombin-induced increase in IL-8/CXCL8-Luc activity was inhibited by the dominant-negative mutant of c-Src and the cells transfected with the kappaB site mutation of the IL-8/CXCL8 construct. Thrombin caused time-dependent increases in phosphorylation of c-Src at tyrosine 416 and c-Src activity. Thrombin-elicited c-Src activity was inhibited by Ro-32-0432. Stimulation of cells with thrombin activated IkappaB kinase alphabeta (IKK alphabeta), IkappaB alpha phosphorylation, IkappaB alpha degradation, p50 and p65 translocation from the cytosol to the nucleus, NF-kappaB-specific DNA-protein complex formation, and kappaB-Luc activity. Pretreatment of A549 cells with Ro-32-4032 and the dominant-negative mutant of c-Src DN inhibited thrombin-induced IKK alphabeta activity, kappaB-Luc activity, and NF-kappaB-specific DNA-protein complex formation. Further studies revealed that thrombin induced PKC alpha, c-Src, and IKK alphabeta complex formation. These results show for the first time that thrombin, acting through PAR1 and PAR4, activates the phosphoinositide-phospholipase C/PKC alpha/c-Src/IKK alphabeta signaling pathway to induce NF-kappaB activation, which in turn induces IL-8/CXCL8 expression and release in human lung EC.  相似文献   

18.
19.
Myostatin negatively regulates satellite cell activation and self-renewal   总被引:31,自引:0,他引:31  
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-beta member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type. In contrast, addition of Myostatin to myofiber explant cultures inhibits satellite cell activation. Cell cycle analysis confirms that Myostatin up-regulated p21, a Cdk inhibitor, and decreased the levels and activity of Cdk2 protein in satellite cells. Hence, Myostatin negatively regulates the G1 to S progression and thus maintains the quiescent status of satellite cells. Immunohistochemical analysis with CD34 antibodies indicates that there is an increased number of satellite cells per unit length of freshly isolated Mstn-/- muscle fibers. Determination of proliferation rate suggests that this elevation in satellite cell number could be due to increased self-renewal and delayed expression of the differentiation gene (myogenin) in Mstn-/- adult myoblasts. Taken together, these results suggest that Myostatin is a potent negative regulator of satellite cell activation and thus signals the quiescence of satellite cells.  相似文献   

20.
In cultured rat vascular smooth muscle cells, sustained activation of ERK is required for interleukin-1beta to persistently activate NF-kappaB. Without ERK activation, interleukin-1beta induces only acute and transient NF-kappaB activation. The present study examined whether the temporal control of NF-kappaB activation by ERK could differentially regulate the expression of NF-kappaB-dependent genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1), and manganese-containing superoxide dismutase (Mn-SOD). Treatment of vascular smooth muscle cells with interleukin-1beta induced the expression of iNOS, COX-2, VCAM-1, and Mn-SOD in a time-dependent manner, but with different patterns. Either PD98059 or U0126, selective inhibitors of MEK, or overexpression of a dominant negative MEK-1 inhibited interleukin-1beta- induced ERK activation and the expression of iNOS and COX-2 but had essentially no effect on the expression of VCAM-1 and Mn-SOD. The expression of these genes was inhibited when NF-kappaB activation was down-regulated by MG132, a proteasome inhibitor, or by overexpression of an I-kappaBalpha mutant that prevented both the transient and the persistent activation of NF-kappaB. Inhibition of ERK did not affect interleukin-1beta-induced I-kappaBalpha phosphorylation and degradation but attenuated I-kappaBbeta degradation. Thus, although NF-kappaB activation was essential for interleukin-1beta induction of each of the proteins studied, gene expression was differentially regulated by ERK and by the duration of NF-kappaB activation. These results reveal a novel functional role for ERK as an important temporal regulator of NF-kappaB activation and NF-kappaB-dependent gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号