首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chiral stationary phase for high-performance liquid chromatography, based upon immobilized human serum albumin (HSA), was used to investigate the effect of octanoic acid on the simultaneous binding of a series of drugs to albumin. Octanoic acid was found to bind with high affinity to a primary binding site, which in turn induced an allosteric change in the region of drug binding Site II, resulting in the displacement of compounds binding there. Approximately 80% of the binding of suprofen and ketoprofen to HSA was accounted for by binding at Site II. Octanoic acid was found to also bind to a secondary site on HSA, with much lower affinity. This secondary site appeared to be the warfarin—azapropazone binding area (drug binding Site I), as both warfarin and phenylbutazone were displaced in a competitive manner by high levels of octanoic acid. The enantioselective binding to HSA exhibited by warfarin, suprofen and ketoprofen was found to be due to differential binding of the enantiomers at Site I; the primary binding site for suprofen and ketoprofen was not enantioselective.  相似文献   

2.
The distribution, free concentration and metabolism of drugs can be significantly altered as a result of binding to albumin. At the same time, the conformational of serum albumin was also changed by interaction with low molecular weight drugs. In present work, we first equilibrated HSA in aqueous solution to obtain the solvated-HSA model. Further solvated-HSA was performed molecular docking with paclitaxel to find the binding sites. The two docking HSA-paclitaxel complexes were obtained and further equilibrated by a 12 ns MD simulation. Then, MMPBSA method was used to investigate the binding free energy of them. Finally, we correlated the fluctuations of residues with corresponding changes in the secondary structure by dssp method. Two binding sites of paclitaxel were found on HSA having considered the solvation effect. More hydrogen bonds were formed at site I respected to site II. A larger binding energy for primary binding also indicated that paclitaxel showed higher binding affinity mainly due to the stronger hydrogen bonding interactions. There was a significant difference between the two complexes on structure according to the dssp results. Moreover, structure of the binding sites exhibited more fluctuations after binding paclitaxel compared with other regions. Paclitaxel binding also induced distinct conformational changes in drug binding site even when it was empty and have contributed to a reduced binding capacity of HSA towards adriamycin.  相似文献   

3.
《Bio Systems》2009,95(3):258-262
The determination of affinity of warfarin and flurbiprofen to human serum albumin (HSA) by fluorescence anisotropy measurements of carboxylate form of camptothecin (CPT-C) is the subject of this paper. A simple method based on measurements of fluorescence anisotropy of CPT-C allows to determine the affinity constant of CPT-C to HSA by computation of the fraction of bound CPT-C molecules with HSA It was observed, that adding of competing drug to plasma significant reduces the rate of increase of CPT-C fluorescence anisotropy with increase of albumin concentration and, the affinity constant of CPT-C to HSA decreases. The hypothesis of interactions between competing drug and CPT-C is presented. The results of these studies suggest that CPT-C displaces other drug from protein binding site and the degree of this displacement depends on concentration of drug and drug-HSA binding affinity. The presented in this paper biosystems research allows to estimate the affinity constant of warfarin and flurbiprofen. It was also confirmed that despite that most of drugs bind predominantly to Site I or Site II of HSA (only one of these sites is high-affinity site), at elevated concentrations, part of drug molecules can be bound to low-affinity site of HSA.  相似文献   

4.
The determination of affinity of warfarin and flurbiprofen to human serum albumin (HSA) by fluorescence anisotropy measurements of carboxylate form of camptothecin (CPT-C) is the subject of this paper. A simple method based on measurements of fluorescence anisotropy of CPT-C allows to determine the affinity constant of CPT-C to HSA by computation of the fraction of bound CPT-C molecules with HSA It was observed, that adding of competing drug to plasma significant reduces the rate of increase of CPT-C fluorescence anisotropy with increase of albumin concentration and, the affinity constant of CPT-C to HSA decreases. The hypothesis of interactions between competing drug and CPT-C is presented. The results of these studies suggest that CPT-C displaces other drug from protein binding site and the degree of this displacement depends on concentration of drug and drug-HSA binding affinity. The presented in this paper biosystems research allows to estimate the affinity constant of warfarin and flurbiprofen. It was also confirmed that despite that most of drugs bind predominantly to Site I or Site II of HSA (only one of these sites is high-affinity site), at elevated concentrations, part of drug molecules can be bound to low-affinity site of HSA.  相似文献   

5.
This work presents the binding of AZT and nine novel AZT derivatives to human serum albumin (HSA), both defatted (HSA(D)) and complexed with fatty acids (HSA(FA)). The bound fractions and binding site were determined by applying an ultrafiltration procedure, with an increased affinity for the majority of these derivatives to HSA(D) being found with respect to that of AZT, while only one derivative exhibited an increased affinity for HSA(FA). By means of computational methods, we observed that specific electrostatic interactions are responsible for the increased affinity for HSA(D), while the presence of fatty acids complexed to HSA caused an intense electrostatic repulsion with negatively charged ligands located in Sudlow site I, thus diminishing their bound fractions. A strong relationship between the calculated energetic components and the observed experimental affinity was identified.  相似文献   

6.
Co‐administration of several drugs in multidrug therapy may alter the binding of each to human serum albumin (HSA) and hence their pharmacological activity. Thirty‐two frequently prescribed drug combinations, consisting of four fluoroquinolone antibiotics and eight competing drugs, have been studied using fluorescence and circular dichroism spectroscopic techniques. Competitive binding studies on the drug combinations are not available in the literature. In most cases, the presence of competing drug decreased the binding affinity of fluoroquinolone, resulting in an increase in the concentration of free pharmacologically active drug. The competitive binding mechanism involved could be interpreted in terms of the site specificity of the binding and competing drugs. For levofloxacin, the change in the binding affinity was small because in the presence of site II‐specific competing drugs, levofloxacin mainly occupied site I. A competitive interference mechanism was operative for sparfloxacin, whereas competitive interference as well as site‐to‐site displacement of competing drugs was observed in the case of ciprofloxacin hydrochloride. For enrofloxacin, a different behavior was observed for different combinations; site‐to‐site displacement and conformational changes as well as independent binding has been observed for various drug combinations. Circular dichroism spectral studies showed that competitive binding did not cause any major structural changes in the HSA molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Benzodiazepine (BDZ) is generally thought to bind to site II of human serum albumin (HSA), also known as the indole-BDZ site, which is located at subdomain III A of the molecule. However, differences in the binding characteristics of BDZ drugs with HSA have been reported. The photolabeling profiles of HSA with [(3)H]flunitrazepam (FNZP) in the presence and absence of diazepam (DZP) were shown to be identical, suggesting that each drug primarily binds to different regions. The results of fluorescent probe displacement experiments showed that FNZP failed to decrease the fluorescence of dansylsarcosine to an extent similar to that of DZP. In the photoinhibition experiment, site I and site II ligands failed to inhibit the photoincorporation of [(3)H]FNZP to HSA. In order to evaluate the photolabeling specificity of FNZP, an attempt was made to photolabel alpha(1)-acid glycoprotein (AGP) which also binds BDZ with similar affinity as HSA. The effect of myristate (MYR) and DZP on the FNZP photolabeling of these two major drug binding plasma proteins was examined. Photoincorporation was inhibited when HSA was photolabeled with [(3)H]FNZP in the presence of MYR but not in the presence of DZP. Conversely, DZP inhibited the photolabeling of [(3)H]FNZP to AGP. These results suggest that FNZP interacts with HSA at regions which are not located in the preformed binding pocket of subdomain III A.  相似文献   

8.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

9.
A simple and effective method was developed for determining binding sites of drugs on human serum albumin (HSA) by independent binding or competitive displacement of bilirubin using flow injection analysis-quartz crystal microbalance (FIA-QCM) system. Both independent and competitive bindings were entirely monitored in real time. Bilirubin as a site I-binding ligand was pre-bound to HSA sensor so as to occupy the drug-binding site I. When the model site II-binding drugs (ibuprofen, ketoprofen and flurbiprofen) were injected into the bilirubin pre-bound HSA system, the frequency continuously decreased by 6Hz, 4Hz and 5Hz, respectively, which was the same as that of their individual binding to HSA sensor. It indicated that the drug binding to site II was independent and did not interfere with bilirubin binding. However, when the model site I-binding drugs (iodipamide and magnesium salicylate) were introduced into the system, the frequency remained unchanged in the initial several minutes and then rapidly decreased by 4Hz for iodipamide and increased by 4Hz for magnesium salicylate. This phenomenon revealed site I-binding drugs competitively bound to HSA against bilirubin and displaced the pre-bound bilirubin. The results demonstrate FIA-QCM can be a valid approach for monitoring the dynamic interaction between drugs and HSA in real time further identifying drug-binding sites without the need of labels.  相似文献   

10.
Human serum albumin (HSA), the most abundant protein found in blood plasma, transports many drugs and ligands in the circulatory system. The drug binding ability of HSA strongly influences free drug concentrations in plasma, and is directly related to the effectiveness of clinical therapy. In current work, binding of HSA to angiotensin II receptor blockers (ARBs) are investigated using docking and molecular dynamics (MD) simulations. Docking results demonstrate that the main HSA–ARB binding site is subdomain IIIA of HSA. Simulation results reveal clearly how HSA binds with valsartan and telmisartan. Interestingly, electrostatic interactions appear to be more important than hydrophobic interactions in stabilizing binding of valsartan to HSA, and vice versa for HSA–telmisartan. The molecular distance between HSA Trp214 (donor) and the drug (acceptor) can be measured by fluorescence resonance energy transfer (FRET) in experimental studies. The average distances between Trp-214 and ARBs are estimated here based on our MD simulations, which could be valuable to future FRET studies. This work will be useful in the design of new ARB drugs with desired HSA binding affinity.  相似文献   

11.
Fanali G  Bocedi A  Ascenzi P  Fasano M 《The FEBS journal》2007,274(17):4491-4502
Human serum albumin (HSA) has an extraordinary ligand-binding capacity, and transports Fe(III)heme and medium- and long-chain fatty acids. In human immunodeficiency virus-infected patients the administered drugs bind to HSA and act as allosteric effectors. Here, the binding of Fe(III)heme to HSA in the presence of three representative anti-HIV drugs and myristate is investigated. Values of the dissociation equilibrium constant K(d) for Fe(III)heme binding to HSA were determined at different myristate concentrations, in the absence and presence of anti-HIV drugs. Nuclear magnetic relaxation dispersion profiles of HSA-Fe(III)heme were measured, at different myristate concentrations, in the absence and presence of anti-HIV drugs. Structural bases for anti-HIV drug binding to HSA are provided by automatic docking simulation. Abacavir and nevirapine bind to HSA with K(d) values of 1 x 10(-6) and 2 x 10(-6) M, respectively. Therefore, at concentrations used in therapy (in the 1-5 x 10(-6) M range) abacavir and nevirapine bind to HSA and increase the affinity of heme for HSA. In the presence of abacavir or nevirapine, the affinity is not lowered by myristate. FA7 should therefore be intended as a secondary binding site for abacavir and nevirapine. Binding of atazanavir is limited by the large size of the drug, although preferential binding may be envisaged to a site positively coupled with FA1 and FA2, and negatively coupled to FA7. As a whole, these results provide a foundation for the comprehension of the complex network of links modulating HSA-binding properties.  相似文献   

12.
Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and molecular modeling methods were employed to analyze the binding of glycyrrhetinic acid (GEA) to human serum albumin (HSA) under physiological conditions with GEA concentrations from 4.0x10(-6) to 4.5x10(-5) mol L(-1). The binding of GEA to HSA was via two types of sites: the numbers of binding site for the first type was near 0.45 and for the second type it was approximately 0.75. The binding constants of the second type binding site were lower than those of the first type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The fluorescence titration results indicated that GEA quenched the fluorescence intensity of HSA through static mechanism. The FTIR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 26.2% at the drug to protein molar ratio of 3. Thermodynamic analysis showed that hydrogen bonds were the mainly binding force in the first type of binding site, and hydrophobic interactions might play a main role in the second type of binding site. Furthermore, the study of computational modeling indicated that GEA could bind to the site I of HSA and hydrophobic interaction was the major acting force for the second type of binding site, which was in agreement with the thermodynamic analysis.  相似文献   

13.
Human serum albumin (HSA) is an abundant transport protein found in plasma that binds a wide variety of drugs in two primary binding sites (I and II) and can have a significant impact on their pharmacokinetics. We have determined the crystal structures at 2.5 A-resolution of HSA-myristate complexed with the R-(+) and S-(-) enantiomers of warfarin, a widely used anticoagulant that binds to the protein with high affinity. The structures confirm that warfarin binds to drug site I (in subdomain IIA) in the presence of fatty acids and reveal the molecular details of the protein-drug interaction. The two enantiomers of warfarin adopt very similar conformations when bound to the protein and make many of the same specific contacts with amino acid side chains at the binding site, thus accounting for the relative lack of stereospecificity of the HSA-warfarin interaction. The conformation of the warfarin binding pocket is significantly altered upon binding of fatty acids, and this can explain the observed enhancement of warfarin binding to HSA at low levels of fatty acid.  相似文献   

14.
15.
Purpose: The purpose of this study was to confirm the hypothesis that a site-II-to-site-I displacement takes place when some nonsteroidal anti-inflammatory drugs are displaced by another drug from their high-affinity binding site to a site of lower affinity on human serum albumin (HSA).Methods: Diclofenac, sodium salt, was used as a representative example because of its prominent reversal of the Cotton effect. Effects of site-specific drugs on the free fraction of diclofenac were determined by equilibrium dialysis, and effects on induced circular dichroism (CD) of diclifenac bound to HSA were studied by CD and CD simulation techniques.Results: Ibuprofen, a site-II-specific drug, altered the CD spectrum of the diclofenac-HSA complex at a molar ratio of 0.5∶1 to that obtained at a higher ratio (5∶1) without ibuprofen. The induced CD spectrum obtained in the presence of ibuprofen was very similar to one that assumed that all diclofenac displaced from its high-affinity binding site (site II) became rebound to a lower-affinity site (site I). The rebinding could be influenced by a free energy linkage between the two sites which would make site I (or parts thereof) more suitable for diclofenac binding.Conclusion: We have confirmed the existence of a site II-to-site displacement, which is very striking and pharmacologically important, because the concentration of unbound drug being displaced is much lower than expected for a competitive mechanism.  相似文献   

16.
Structural basis of the drug-binding specificity of human serum albumin   总被引:8,自引:0,他引:8  
Human serum albumin (HSA) is an abundant plasma protein that binds a remarkably wide range of drugs, thereby restricting their free, active concentrations. The problem of overcoming the binding affinity of lead compounds for HSA represents a major challenge in drug development. Crystallographic analysis of 17 different complexes of HSA with a wide variety of drugs and small-molecule toxins reveals the precise architecture of the two primary drug-binding sites on the protein, identifying residues that are key determinants of binding specificity and illuminating the capacity of both pockets for flexible accommodation. Numerous secondary binding sites for drugs distributed across the protein have also been identified. The binding of fatty acids, the primary physiological ligand for the protein, is shown to alter the polarity and increase the volume of drug site 1. These results clarify the interpretation of accumulated drug binding data and provide a valuable template for design efforts to modulate the interaction with HSA.  相似文献   

17.
Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional capacity to bind ligands (e.g. heme and drugs). Here, binding of the anti-HIV drugs abacavir, atazanavir, didanosine, efavirenz, emtricitabine, lamivudine, nelfinavir, nevirapine, ritonavir, saquinavir, stavudine, and zidovudine to HSA and ferric heme-HSA is reported. Ferric heme binding to HSA in the absence and presence of anti-HIV drugs was also investigated. The association equilibrium constant and second-order rate constant for the binding of anti-HIV drugs to Sudlow's site I of ferric heme-HSA are lower by one order of magnitude than those for the binding of anti-HIV drugs to HSA. Accordingly, the association equilibrium constant and the second-order rate constant for heme binding to HSA are decreased by one order of magnitude in the presence of anti-HIV drugs. In contrast, the first-order rate constant for ligand dissociation from HSA is insensitive to anti-HIV drugs and ferric heme. These findings represent clear-cut evidence for the allosteric inhibition of anti-HIV drug binding to HSA by the heme. In turn, anti-HIV drugs allosterically impair heme binding to HSA. Therefore, Sudlow's site I and the heme cleft must be functionally linked.  相似文献   

18.
Human serum albumin (HSA) and α-1-acid glycoprotein (AGP) (acute phase protein) are the plasma proteins in blood system which transports many drugs. To understand the pharmacological importance of piperine molecule, here, we studied the anti-inflammatory activity of piperine on mouse macrophages (RAW 264.7) cell lines, which reveals that piperine caused an increase in inhibition growth of inflammated macrophages. Further, the fluorescence maximum quenching of proteins were observed upon binding of piperine to HSA and AGP through a static quenching mechanism. The binding constants obtained from fluorescence emission were found to be Kpiperine?=?5.7 ± .2 × 105 M?1 and Kpiperine = 9.3± .25 × 104 M?1 which correspond to the free energy of ?7.8 and ?6.71 kcal M?1at 25 °C for HSA and AGP, respectively. Further, circular dichrosim studies revealed that there is a marginal change in the secondary structural content of HSA due to partial destabilization of HSA–piperine complexes. Consequently, inference drawn from the site-specific markers (phenylbutazone, site I marker) studies to identify the binding site of HSA noticed that piperine binds at site I (IIA), which was further authenticated by molecular docking and molecular dynamic (MD) studies. The binding constants and free energy corresponding to experimental and computational analysis suggest that there are hydrophobic and hydrophilic interactions when piperine binds to HSA. Additionally, the MD studies have showed that HSA–piperine complex reaches equilibration state at around 3 ns, which prove that the HSA–piperine complex is stable in nature.  相似文献   

19.
In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.  相似文献   

20.
In this paper, the anti-coagulant rodenticide-human serum albumin (HSA) binding was investigated using a perturbation method to calculate the solute distribution isotherms. It was shown that rodenticide can bound either on the benzodiazepine HSA site with low affinity (site I) or on the warfarin HSA site with high affinity (site II). The thermodynamic parameters of this association were calculated for the two HSA binding sites. For the site II, the rodenticide-HSA association was governed enthalpically whereas for the site I, this one was driven entropically. Moreover, the role of the magnesium (Mg(2+)) and calcium (Ca(2+)) on this association was carried out. It was clearly demonstrated that the rodenticide affinity for the site I was not affected by modifying the bulk solvent surface tension whereas for the site II the association constant increased strongly with the Mg(2+) or the Ca(2+) concentration in the bulk solvent. These results showed that the rodenticide-HSA affinity and thus the rodenticide toxicological effect depends on the Mg(2+) or Ca(2+) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号